• Title/Summary/Keyword: Piezoeletric

Search Result 21, Processing Time 0.042 seconds

The effect of working parameters on removal of casting gold alloy using a piezoelectric ultrasonic scaler with scaler tip in vitro (압전방식 초음파 치석제거기의 작업조건에 따른 치과주조용 합금의 삭제에 관한 연구)

  • Cha, Kuk-Bong;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Young-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.139-148
    • /
    • 2009
  • Purpose: Ultrasonic scalers have been widely used for removing biofilm which is considered as major etiologic factor of periodontal disease. The purpose of this study was to evaluate the effect of working parameters of piezoeletric ultrasonic scaler with scaler tip (No. 1 tip) on casting gold alloy removal. Methods: Type III dental casting gold alloy (Firmilay$^{circledR}$, Jelenko Inc, CA, USA) was used as substitute for tooth substance. Piezoeletric ultrasonic scaler and No.1 scaler tip (P-Max$^{circledR}$, Satelec, France) were selected. The selected working parameters were mode (P mode, S mode), power setting (2, 4, 8) and lateral force (0.5 N, 1.0 N, 2.0 N). The effect of working parameters was evaluated in terms of ablation depth, ablation width and ablation area. Results: Mode influenced ablation depth and ablation area. Power also influenced ablation depth and ablation area. Especially, Power 2 and power 8 showed statistically significant difference. Lateral force had influence on ablation width, and 0.5 N resulted significant increase compared with 1.0 N and 2.0 N. Ablation depth was influenced by mode, power and lateral force and defect width was influenced by lateral force. Ablation area was influenced by mode and power. Conclusions: It can be concluded that the use of piezoelectric ultrasonic scaler with No. 1 scaler tip in S mode and high power may result in significant loss of tooth substance.

Development of A New-In-pipe Locomotive Mechanism Using Piezoeletric Bimorph (압전 바이모프를 이용한 새로운 구조의 관내 이동메커니즘 개발)

  • 김준형;박한길;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.869-872
    • /
    • 2001
  • A new in-pipe locomotive mechanism is developed using piezoelectric bimorphs. Two bimorphs are linked serially and produce an ellipsoidal motion at the end of bimorph. The device moves by the friction force between the rubber attached at the bimorph end and the inner surface of the pipe. The developed mechanism is very simple and need relatively small power compared to a conventional multi-layer piezoelectric motor.

  • PDF

Piezoeletric properties of Pb(Fe$_{1/2}Sb_{1/2})$O$_3$+ Pb(Zr$_{0.52}Ti_{0.48})o_3$system ceramics (Pb(Fe$_{1/2}Sb_{1/2})$O$_3$+ Pb(Zr$_{0.52}Ti_{0.48})o_3$ 계 세라믹스의 압전 특성)

  • 양병모;박용욱;윤석진;김현재;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.54-58
    • /
    • 1996
  • In this paper, the structure, dieletric and piezoelectric properties of Pb(Fe$_{\frac{1}{2}}$/Sb$_{\frac{1}{2}}$$O_3$+ Pb(Zr$_{0.52}$ Ti$_{0.48}$ )O$_3$system ceramics were investigated and the effects of donor Nb$^{+5}$ on these properties were characterized for the application of the actuator. In xPb(Fe$_{\frac{1}{2}}$Sb$_{\frac{1}{2}}$)O$_3$+ (1-x) Pb(Zr$_{0.52}$ Ti$_{0.48}$ )O$_3$system ceramics, tetragonality decreased as x and Nb$_2$O$_{5}$ wt% were increased. In 0.05Pb(Fe$_{\frac{1}{2}}$Sb$_{\frac{1}{2}$}$)O$_3$+ 0.95 Pb(Zr$_{0.52}$ Ti$_{0.48}$ )O$_3$system, grain size was smallest but showed best dielectric and piezoelectric properties. The specimen sintered at 120$0^{\circ}C$ in 0.05pb(Fe$_{\frac{1}{2}}$Sb$_{\frac{1}{2}}$ )O$_3$+ 0.95 Pb(Zr$_{0.52}$ Ti$_{0.48}$ )O$_3$+ Nb$_2$O$_{5}$ 0.6wt% exihibited best piezoeletric properties such as $K^{p}$ =64%, d$_{33}$ =490 [$\times$10$^{-12}$ C/N] and strain was 1320[$\times$10$^{-6}$ Δ$\ell$/$\ell$]at AC 6kV/cm

  • PDF

A Study on the Measurement of Stress Intensity Factors for the Fatigue Crack Propagation (피로 균열 진전에 따른 응력확대계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • Fatigue cracks in structural components are the most common cause of structural failure when exposed to fatigue loading. In this respect, fatigue crack detection and structural health assessment are very important. Currently, various smart materials are used for detecting fatigue crack and measurement of SIFs(Stress Intensity Factors). So, this paper presented a measurement of SIFs using MFC(Micro Fiber Composite) sensor which is the one of the smart material. MFC sensor is more flexible, durable and reliable than other smart materials. The SIFs of Mode I(K I) as well as Mode II(K II) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results.

The vibration isolating system using a magnetostrictive actuator (자기 변형 작동기를 이용한 진동 절연 시스템)

  • 정학근;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.276-279
    • /
    • 1997
  • When a magnetostrictive material is exposed to a magnetic field, its geometry changes due to a magnetostrictive effect. The magnetostriction is analogous to the piezoeletricity. The displacement of the magnetostrictive material is proportional to the applied current while that of the piezoelectric material is proportional to the voltage. A magnetostrictive material generates large displacement and higher compressive force compared with a piezoeletric material. These advantages provide a good performance of a vibration isolation of a platform. In this work, it is applied to a driving actuator for vibration isolation of a platform. The properties of a magnetostrictive material are investigated in terms of hysteresis and displacement vs. applied current for a various preload. Modeling of the displacement of the vibration isolating actuator is performed as it behaves as a flow source. A sliding mode controller is designed to demonstrate the ability of the magnetostrictive actuator to reduce the vibration at the platform. The effectiveness of the proposed scheme is demonstrated through experimental works. The experimental results of the vibration of the platform axe presented in terms of time response and frequency response.

  • PDF

PID Force Control of a miniature robot Gripper (PID 제어기에 의한 소형 로봇용 그리퍼의 힘 제어)

  • 홍동표
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 1999
  • This paper is concerned with the theoretical and experimental study on the force conrtrol of a miniature robotic gripper. The gripper is an uniform flexible cantilever equipped with a distributed set of compact force sensor. As an actuator piezoelectric acturator, piezoelectric acturator is fixed with cupper plate at which the beam is clamped. The mathematical model of the assembled electro-mechaincal system is developed. The force sensor is described by a set of concentrated mass-spring system. The formulated equations of motion are applied to he study of a control problem where the gripper is commanded to grip an object The usefulness of the PID control technique is verified by experiment.

  • PDF

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Poling Effect on Piezoeletric Ceramics for Air Medium (공기 매질에 의한 압전 세라믹스의 분극효과)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.464-470
    • /
    • 2010
  • A new method for the poling of piezoelectric ceramics with an air insulation medium in stead of silicon oil is described. A similar variation of electromechanical coupling coefficient $K_t$, for an air medium is observed in comparison to that of the material poled by the conventional poling method using a silicon oil medium. Different poling parameters such as dielectric constant $\varepsilon^T$ and frequency deviation ${\Delta}f$ are studied as well as the influence on the aging effect. The required poling factors to achieve the optimal piezoelectric characteristics are electric field, 2 kV/mm, temperature $100^{\circ}C$, and poling time 30 Min. From this result electric field 3 kV/mm atmosphere airs there being will be able to use with the polarization insulation medium about the piezoelectric material, confirmed.

The study on piezoelectric transducers: theoretical analysis and experimental verification

  • Sung, Chia-Chung;Tien, Szu-Chi
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1063-1083
    • /
    • 2015
  • The main purpose of this research is to utilize simple mathematical models to depict the vibration behavior and the resulted sound field of a piezoelectric disk for ultrasonic transducers. Instead of using 1-D vibration model, coupled effect between the thickness and the radial motions was considered to be close to the real vibration behavior. Moreover, Huygens-Fresnel principle was used in both incident and reflected waves to analyze the sound field under obstacles in finite distance. Results of the tested piezoelectric disk show that, discrepancies between the simulation and experiment are 2.5% for resonant frequency and 12% for resulted sound field. Therefore, the proposed method can be used to reduce the complexity in modeling vibration problems, and increase the reliability on analyzing piezoeletric transducers in the design stage.

Design of the Piezoelectric Sounder Using the PMN-PT-PZ (PMN-PT-PZ 계 세라믹스를 이용한 압전 발음체 설계)

  • Ko, Young-Jun;Kim, Hyun-Chool;Nam, Hyo-Duk;Chang, Ho-Gyeong;Woo, Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • In this study, the physical properties of the piezoelectric sounder with metal-piezoelectric ceramics were analyzed. The dielectric and piezoeletric properties of 0.5wt% MnO$_2$ and NiO doped 0.1Pb(Mg$\_$1/3/Nb$\_$2/3/)O$_3$-0.45PbTiO$_3$-0.45PbZrO$_3$ ceramics were investigated aiming at acoustic transducer applications. The acoustic characteristics of a thin circular disc-type with metal-piezoceramics have been investigated. Also, the acoustic characteristics for the geometrical form of case were investigated. The piezoelectric sounder with 200kHz resonant frequency and 20kHz bandwidth was designed by considering the sharp directivity and the sound pressure.

  • PDF