• Title/Summary/Keyword: Piezoelectric transducer

Search Result 391, Processing Time 0.025 seconds

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Experimental Investigation of Characteristics Change by Kerf-Fill Material between Arrayed Elements of a Piezoelectric Transducer (압전 배열 트랜스듀서의 진동 요소간 kerf 충진 매질에 따른 특성변화의 실험적 고찰)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.215-220
    • /
    • 2008
  • The kerfs between arrayed piezoelectric elements in a medical ultrasonic transducer or a piezoelectric composite transducer are generally filled by polymeric materials. The boundary condition of the elements for lateral mode vibration is changed according to the kerf-filling materials, so that the resonance frequency for longitudinal mode of the transducer is also varied. In this study, to investigate the resonance frequency variation for an arrayed transducer experimentally, the piezoelectric vibration elements of $14mm{\times}0.22mm{\times}0.44mm$ were fabricated and those were linearly arrayed. And, the resonance frequencies were measured for three cases of kerf-filling condition, non-filling and two different kinds of epoxy filling. Conclusively, it is confirmed that the resonant frequency variation shows the similar tendency with the theoretical one for the longitudinal mode.

Effects of piezoelectric material on the performance of Tonpilz transducer using finite element method (Tonpilz 트랜스듀서의 성능에 미치는 압전소재의 영향)

  • Seo, Jin-Won;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.139-144
    • /
    • 2016
  • Effects of the shape and size of the piezoelectric materials on the performance of tonpilz transducers were studied with a computer simulation using a finite element method (FEM). The diameter and height of the donut-shaped piezoelectric ceramics head mass were changed as variables. And the effect of the stack number was also investigated. Finally, if the piezoelectric ceramics were changed to a piezoelectric single crystal having high piezoelectric constants, how the performances especially, the output power and the TVR transmittance were affected was simulated by FEM. As a result, the output of transducer could be increased to 10 times of PZT-4 with replacement of relaxor single crystal of the same size.

Piezoelectric Transducer for Ultrasonic Flaw Detector with High Performance (고성능 초음파 결함탐상기를 위한 압전변환기)

  • Jung, Jun Hwan;Jun, Ho Ik;Kim, Hyun-Sik;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1645-1652
    • /
    • 2013
  • In this paper, a new piezoelectric transducer for high performance ultrasonic flaw detector used in non-destructive test (NDT) is implemented. Here, the goals for some major characteristics such as piezoelectric strain constant and electro-mechanical coupling factor are fixed in advanced. Then, the parameters obtained by finite element analysis (FEA) are exploited to design and implement the piezoelectric transducer. As a result of experiments using manufactured samples, it is proved that the new PZT ceramics satisfy the goals very well. It has much improved impedance characteristic at the resonant frequency and generation of ultrasonic signals. In addition, ultrasonic flaw detector with the new transducer provides increased flaw detecting gain than the conventional one. Thus, it is considered that the new flaw detector contributes significantly to improve reliability of the NDT.

A Study on the Cross Talk Level in a Piezoelectric Ultrasonic Array Transducer (압전형 초음파 배열 변환기의 음향간섭 레벨에 관한 연구)

  • 이수성;김영신;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.56-61
    • /
    • 2002
  • In piezoelectric ultrasonic linear array transducers widely used for diagnosis, the cross talk caused by the structural cross-coupling between adjacent elements inside the transducer affects the probe performance in a significant manner. In this study, we constructed a finite element model of a piezoelectric ultrasonic transducer, and analyzed its cross talk level with respect to the shape of and materials inside the kerf, The results of this work can be utilized in optimal design of the transducers for medical diagonosis and treatment as well as W applications.

Simulation of a piezoelectric flextentional sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 압전체 유연형 쏘나 변환기 시뮬레이션)

  • Jarng, Soon-Suck
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.307-312
    • /
    • 1999
  • A piezoelectric flextentional sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state displacement modes, underwater directivity patterns. It is shown that the present barrel-stave sonar transducer of the piezoelectric material produces flextentional displacements which could be related with higher output power, lower quality factor and more omnidirectional beam pattern than other types of sonar transducers.

  • PDF

Design and Acoustic Properties of Piezoelectric Device with the PMN-PT-PZ System (PMN-PT-PZ계를 이용한 압전소자의 설계 및 음향특성)

  • Go, Young-Jun;Seo, Hee-Don;Nam, Hyo-Duk;Chang, Ho-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.283-286
    • /
    • 2000
  • In this study, the acoustic transducer of a thin circular disc-type with PZT/Metal was manufactured. The piezoelectric transducer with 200kHz resonance frequency was designed by considering the sharp directivity and the sound pressure. The dielectric and piezoelectric properties of 0.5 weight percent $MnO_2$ and NiO doped $0.1Pb(Mg_{1/3}Nb_{2/3})O_3-0.45PbTiO_3-0.42PbZrO_3$ ceramics were investigated aiming at acoustic transducer applications. Also, the acoustic characteristics of a thin circular disc-type with metal-piezoceramics have been Investigated.

  • PDF

Directivity Characteristics Control of Ultrasonic Transducer Array Using Two-layered Piezoelectric Transducer (2층 구조 압전 트랜스듀서를 이용한 초음파 트랜스듀서 어레이의 지향 특성 가변)

  • 김정호;송인진;하강렬;김천덕;김무준
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.629-636
    • /
    • 2003
  • It will be very convenient if the directivity characteristics of ultrasonic transducer array are controllable by the purpose of use in the fields of sonar system or ultrasonic diagnostic system, In this paper, a control method of the directivity characteristics was suggested. The transducer array was consisted of two-layered piezoelectric vibrators. Efficiency of each vibrator is controlled in 2nd harmonic mode by electrical capacitance. Therefore, the beam width of the transducer array can be controlled by changing the capacitance. The directivity characteristics of the array were analyzed experimentally and theoretically. As the results, it is confirmed that -3 dB beam width of main lobe can be controlled in the range of 7.6°∼16.2°.

3-D Underwater Object Restoration Using Ultrasonic Transducer Fabricated with 1-3 Type Piezoceramic/Polymer Composite and Neural Networks (1-3형 복합압전체로 제작한 초음파 트랜스듀서와 신경회로망을 이용한 3차원 수중 물체복원)

  • Jo, Hyeon-Cheol;Lee, Gi-Seong;Choe, Heon-Il;Sa, Gong-Geon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.456-461
    • /
    • 1999
  • In this study, the characteristics of Ultrasonic Transducer fabricated with PZT-Polymer 1-3 type piezoelectric ceramic/polymer composite are investigated. 3-D underwater object restoration using the self-made ultrasonic transducer and modified SCL(Simple Competitive Learning) neural network was presented. The ultrasonic transducer was satisfied with the required condition of commerical ultrasonic transducer in underwater. The modified SCL neural network using the acquired object data $16\times16$ low resolution image was used for object restoration of $32\times32$ high resolution image. The experimental results have shown that the ultrasonic transducer fabricated with PZT-Polymer 1-3 type piezoelectric ceramic/polymer composite could be applied for SONAR system.

  • PDF

Structural design of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 트랜스듀서의 구조 설계)

  • Jarng, Soon-Suck;Chung, Woon-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.377-387
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been designed using a coupled FE-HEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state frequency response for TX displacement modes, directivity patterns, resonance frequencies, TVRs. While the conventional barrel-stave typed sonar transducer of the piezoelectric material is designed, the external surface of the transducer is modified in order to allow the same hydrostatic pressure to be applied onto the inner and the outer surfaces of the transducer. With this modification for deep-water application, a new resonance mode is generated at lower frequency. This lower resonance mode can be adjusted according to the degree of the outer surface modification.

  • PDF