• Title/Summary/Keyword: Piezoelectric property

Search Result 114, Processing Time 0.026 seconds

A study on the piezoelectric vibration device for mobile phone (이동통신 단말기용 압전 진동 장치에 관한 연구)

  • Yoo, J.S.;Kwon, O.D.;Yun, Y.J.;Kang, S.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.379-382
    • /
    • 2004
  • In this paper, it is investigated in advance about the PZT-based composition for piezoelectric vibration device. The specimens of piezoelectric ceramics are made of Columbite method. The piezoelectric vibration device by this composition is designed by ATILA(Magsoft) program used FEM(Finite Element Method). The vibration device used for mobile phone must be driven in the frequency of $130{\sim}200Hz$, so the resonant frequency of piezoelectricity must adjust driven frequency bandwidth. The result of analysis by ATILA is appeared dependant property of length, width, thickness and dummy weight about resonant frequency of the piezoelectric vibration device. The size of manufactured actuator is $28{\times}12{\times}0.3mm^3(length {\times}width{\times}thickness)$ and this is bimorph type. The test of manufactured piezoelectric vibration device measure displacement, acceleration and power dissipation. The piezoelectric vibration device has the advantage more than electro-magnetic motor, however the size of manufactured device is larger than electro-magnetic motor.

  • PDF

Study on the Preparation of the Piezoelectric Composite Materials in PZT Ceramics-Polymers by Extrusion Method and its Properties (압출가공방법에 의한 PZT세라믹스-고분자 압전복합재료의 제조 및 특성 연구)

  • 이덕출;김진수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.74-78
    • /
    • 1990
  • In this study, to develope the ultrasonic transducer element, the extrusion method which is the processing technique of the piezoelectric composite materials is introduced, the connectivity of the piezoelectric composite materials is the 1-3 type, and we study the properties of the materials. The electromechanical coupling factor(kt) of the materials is above 0.6, the resonance property(fr) is the thickness mode in the frequency range of 0.5 to 2 [MHz] and the acoustic impedance(Zac) is about 5 to 7 [Maryl]. From these results, it is known that the piezoelectric composite materials manufactured byt he extrusion method will be able to develope the ultrasonic transducer elements.

  • PDF

Studies on Formation of Piezoelectric Film for Sensor and its Characteristic Estimation (센서용 piezoelectric film의 형성 및 특성 평가에 대한 연구)

  • Lee, Sung-Jun;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2509-2511
    • /
    • 1998
  • In this study, we formed the piezoelectric film and estimated its characteristics for sensor application. The $Pb(Zr,Ti)O_3(PZT)$ was chosen as piezoelectric material and we used Sol-Gel method to form film. To increase film thickness, the multiple coatings were performed, and the good characteristics obtained in thick film compared to thin film. Because PZT film showed fine etching property as well as other good characteristics, it was thought that it was appropriate material for sensor fabrication.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintered Pb(Mn1/3Nb2/3)0.02(Ni1/3Nb2/30.12(ZrxTi1-x)0.86O3 System Ceramics

  • Yoo, Ju-Hyun;Lee, Sang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.121-124
    • /
    • 2009
  • In this study, in order to develop compositions of ceramics suitable for piezoelectric actuator and ultrasonic vibrator applications using low temperature sintering, multilayer, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids. Their structural, piezoelectric and dielectric characteristics were investigated according to the Zr/Ti ratio. As the Zr/Ti ratio increased, the electromechanical coupling factor $k_p$, and piezoelectric constant $d_{33}$ and the mechanical quality factor $Q_m$ all increased with Zr/Ti ratio and then decreased after the ratio exceeded 50/50. At the ratio of Zr/Ti =49/51 and sintering temperature of $900^{\circ}C$; the density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$ piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ all showed the optimum values of 7.900 $g/cm^3$, 0.576, 856, 312 pC/N, 1,326, respectively. These property values are very suitable for multilayer ceramics actuator applications.

Multilayer Piezoelectric Energy Harvester and Charging Property in Capacitor (다층형 압전세라믹 발전기 제작 및 capacitor 충전 특성)

  • Kim, Hyung-Chan;Song, Hyun-Cheol;Lee, Ju-Young;Jeong, Dae-Yong;Kim, Hyun-Jae;Yoon, Seok-Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.301-302
    • /
    • 2007
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the wireless sensor node. For the driving wireless sensor node, the generated energy is required to store the capacitor or battery. For the rapid charging, higher voltage than battery's capacity voltage and a large current are necessitated. However, the piezoelectric energy harvester is generally featured as a high voltage and low current generator. As it is known that the generated current in the piezoelectric energy harvester is related to an area of electrode of piezoelectric ceramics, we fabricated the multilayer ceramics to increase effective area for the faster charging. The energy harvesting properties and charging characteristics of multilyaer ceramics were investigated and discussed.

  • PDF

Parameter Optimization for Vibration Control of a Cantilever Beam Using Piezoelectric Shunt Damping System (압전분기회로를 이용한 보 구조물의 진동제어 파라미터 최적화 해석)

  • Lim K.C.;Cho D.S.;Park W.C.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.918-921
    • /
    • 2005
  • According to the mechanical-electrical coupling characteristics and the electrical Impedance property of resistor-inductor-capacitor(RLC) series resonant circuit, the mechanical impedance analysis of a bimorph piezoceramic patch shunted with a series RLC resonant circuit is conducted. The displacement transfer function of a cantilever beam bonded with a piezoelectric shunt damping module is deduced in the case of single mode vibration of the beam. By the use of vibration damping theory of tuned mass damper system, the parameter optimization of piezoelectric shunt damping system is performed. The optimal resonant state of the shunting circuit can be obtained when the resister and conductor are optimally adjusted. Test results show that the vibration control effect as well improved with optimized piezoelectric shunt system.

  • PDF

Synthesis and Piezoelectric Properties of PZT Ceramics will Improved Process (공정개선을 통한 PZT 세라믹스의 합성 및 압전특성)

  • 윤철수;송태권;박태곤;박인용;김명호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.904-911
    • /
    • 2001
  • High-density lead zirconate titanate(Pb(Zr$\_$0.53/Ti$\_$0.47/)O$_3$, PZT) ceramics were fabricated by a new milling-precipitation(MP) process improved from the conventional solid state process. This process was progressed by a milling impregnation through mixing ZrO$_2$ and TiO$_2$ powders with lead nitrate(Pb(NO$_3$)$_2$) water solution in zirconia ball media, and then milling precipitation was induced from precipitation of PbC$_2$O$_4$ by adding ammonium of oxalate monohydrate((NH$_4$)$_2$C$_2$O$_4$$.$H$_2$O) as a precipitant. As a result of this process, single-phase perovskite structure was formed at the calcination temperature of 750$\^{C}$ for Pb(Zr$\_$0.53/Ti$\_$0.47/)O$_3$ powders. In addition, the highest density at the sintering temperature of 1100$\^{C}$ was obtained, because of the highly sinterable PZT Powders ground through the re-milling process. Piezoelectric and dielectric properties of sintered sample were improved by MP process.

  • PDF

Design and Evaluation of Piezoelectric Ultrasonic Scaler Produced by a Simulation (시뮬레이션을 통한 압전형 초음파 스케일러 개발 및 평가)

  • Kim, Chul-Min;Lee, Young-Jin;Paik, Jong-Hoo;Jeong, Young-Hun;Kang, Kook-Jin;Lee, Jeong-Bae;Lee, Seung-Dae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.832-836
    • /
    • 2009
  • A piezoelectric ultrasonic scaler, usually used to remove the tartar out of teeth and to amputate the pubis, is a recently popular instrument for dental treatment due to its several merits such as small size, low-electric power, precision and low-cost. It has typically two parts of a tip and vibration system, which is also composed of head, piezoelectric elements and tail-mass. The scaler concentrates its displacement on tip and has commonly a resonance frequency at 25~30 kHz, and in order to improve the performance of the scaler, it is important to standardize the size of the vibration system without tip for high performance because scaler in quality differs according to several tips. In this study, a Finite Element Analysis (FEA) was utilized to optimize the structure of ultrasonic scaler in the vibration system. Consequently, this study revealed that influence of several tips on property were minimized and scaler showed good property at the resonance frequency of 28 kHz.

Collocation of Sensor and Actuator for Active Control of Sound and Vibration (능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구)

  • 이영섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.778-783
    • /
    • 2003
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered, but this pair suffers from the in-plane motion coupling problem with the out-of$.$plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFB control. As a new alternative, a point sensor and piezoelectric actuator pair is also considered, which provides SPR property in all frequency range except at the first resonance in very low frequency. This non-SPR resonance could be minimized by applying a phase lag compensator.

  • PDF

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF