• 제목/요약/키워드: Piezoelectric properties

검색결과 1,100건 처리시간 0.038초

비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교 (Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics)

  • 정승운;임지호;정한보;지성엽;최승곤;정대용
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

자동차 진동 에너지 변환을 위한 압전 에너지 하베스팅에 관한 연구 (Study on the Piezoelectric Energy Harvesting Technology for the Energy Conversion of Vibration in Automobiles)

  • 이현영;김광원;예지원;우수현;이건;이승아;정성록;정선혜;김호성;남가현;조윤영;최한승;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.495-504
    • /
    • 2021
  • Energy Harvesting is a technology that can convert wasted energy such as vibration, heat, light, electromagnetic energy, etc. into usable electrical energy. Among them, vibration-based piezoelectric energy harvesting (PEH) has high energy conversion efficiency with a small volume; thus, it is expected to be used in various autonomous powering devices, such as implantable medical devices, wearable devices, and energy harvesting from road or automobiles. In this study, wasted vibration energy in an automobile is converted into electrical energy by high-power piezoelectric materials, and the generated electrical energy is found to be an auxiliary power source for the operation of wireless sensor nodes, LEDs, etc. inside an automobile. In order to properly install the PEH in an automobile, vibration characteristics includes frequency and amplitude at several positions in the automobile is monitored initially and the cantilever structured PEH was designed accordingly. The harvesting properties of fabricated PEH is characterized and installed into the engine part of the automobile, where the vibration amplitude is stable and strong. The feasibility of PEH is confirmed by operating electric components (LEDs) that can be used in practice.

바이오 메디컬용 코어-쉘 구조의 Bi0.5(Na0.78K0.22)0.5TiO3계 무연압전세라믹 소재의 개발 (Development of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-free Piezoelectric Ceramic Material with Core-shell Structure for Biomedical)

  • 윤성준;배준수
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.15-22
    • /
    • 2023
  • BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).

용융염합성법에 의한 $A_{2}B_{2}O_{7}$ 고온압전세라믹스의 제작과 전기적특성 (Fabrication and Electrical Properties of High Tc $A_{2}B_{2}O_{7}$ Piezoelectric Ceramics Using the Powders Prepared by the Molten Salt Synthesis Method)

  • 박인호;김태규;남효덕
    • 센서학회지
    • /
    • 제5권3호
    • /
    • pp.93-100
    • /
    • 1996
  • 높은 큐리온도를 가진 다결정 세라믹스 $Sr_{2}(Ta_{1-x}Nbx)_{2}O_{7}$$La_{2}Ti_{2}O_{7}$을 고상반응법과 용융염합성법으로 제조하고 조성과 하소 및 소결조건에 따른 분말특성, 상구조, 소결특성, 입자배향도 및 전기적 특성을 조사하였다. 용융염합성법에 의해 합성된 하소분말의 단일상은 고상반응법에 의한 것보다 100 - $150^{\circ}C$ 낮은 하소온도에서 나타났다. 한편 $Sr_{2}(Ta_{1-x}Nbx)_{2}O_{7}$ 소결체에서 Nb의 조성이 커질수록 입자배향도가 커지고 소결성 및 고온에서의 유전특성이 좋아졌다. 또 용융염합성법으로 $A_{2}B_{2}O_{7}$ 세라믹스를 제조할 경우 고상반응법에 비해 소결온도를 낮출 수 있고 비유전율도 다소 높일 수 있으나 압전특성이나 입자배향도는 향상되지 않았다.

  • PDF

Studies on magneto-electro-elastic cantilever beam under thermal environment

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.205-217
    • /
    • 2012
  • A smart beam made of magneto-electro-elastic (MEE) material having piezoelectric phase and piezomagnetic phase, shows the coupling between magnetic, electric, thermal and mechanical under thermal environment. Product properties such as pyroelectric and pyromagnetic are generated in this MEE material under thermal environment. Recently studies have been published on the product properties (pyroelectric and pyromagnetic) for magneto-electro-thermo-elastic smart composite. Hence, the magneto-electro-elastic beam with different volume fractions, investigated under uniform temperature rise is the main aim of this paper, to study the influence of product properties on clamped-free boundary condition, using finite element procedures. The finite element beam is modeled using eight node 3D brick element with five nodal degrees of freedom viz. displacements in the x, y and z directions and electric and magnetic potentials. It is found that a significant increase in electric potential observed at volume fraction of $BaTiO_3$, $v_f$ = 0.2 due to pyroelectric effect. In-contrast, the displacements and stresses are not much affected.

Electrical/Optical Characterization of PZT Thin Films Deposited through Sol-Gel Processing

  • Hwang, Hee-Soo;Kwon, Kyoeng-Woo;Choi, Jeong-Wan;Do, Woo-Ri;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.361-361
    • /
    • 2012
  • PZT (Pb(Zr,Ti)O3) thin films have been used widely in the MEMS application, due to their inherent ferroelectric and piezoelectric properties. Such ferroelectricity induces much higher dielectric constants compared to those of the nonperovskite materials. In this work, the PZT thin films were deposited onto Indium-Tin-oxide (ITO) substrates through the spin-coating of PZT sols. The deposited PZT thin films were characterized in terms of the electrical and optical properties with special emphases on conductivity and optical constants. The detailed analysis techniques incorporate the dc-based current-voltage characteristics for the electrical properties, spectroscopic ellipsometry for optical characterization, atomic force microscopy for surface morphology, X-ray Photoelectron Spectroscopy for chemical bonding, Energy-dispersive X-ray Spectrometry for chemical analyses and X-ray diffraction for crystallinity. The ferroelectric phenomena were confirmed using capacitance-voltage measurements. The integrated physical/chemical features are attempted towards energy-oriented applications applicable to next-generation high-efficiency power generation systems.

  • PDF

$MnO_2$$Cr_2O_3$$Pb(Mg_{1/2}W_{1/2})_{0.3} Ti_{0.4} Zr_{0.3}O_3$ Ceramics의 압전성질에 미치는 영향 (The Effects of $MnO_2$ and $Cr_2O_3$ on Piezoelectric Properties of $Pb(Mg_{1/2}W_{1/2})_{0.3} Ti_{0.4} Zr_{0.3}O_3$ Ceramics)

  • 안영필;박종상
    • 한국세라믹학회지
    • /
    • 제19권4호
    • /
    • pp.293-299
    • /
    • 1982
  • The effects of $MnO_2$ and $Cr_2O_3$ on the Piezoelectrictric properties of Pb(Mg1/2W1/2)0.3 Ti0.4 Zr0.3O3 Ceramics. Electromechanical properties in the system in connection with the sintering temperature and the effects of $MnO_2$ and $Cr_2O_3$ addition. The dielectric constant of the ceramics decreased with the additions of $MnO_2$ while the additions of $Cr_2O_3$ increased the value. The Planar coupling factor (Kp) of the ceramics with 0.2wt% $MnO_2$ and with 0.2wt% $Cr_2O_3$ gave the highest value of 0.52 and 0.513 as sintered at 106$0^{\circ}C$, 108$0^{\circ}C$, respectively. The value of mechanical Q-factor were in parallel with the fired density of the ceramics. The optical micrography of the sintered bodies showed that the additions of $MnO_2$ promoted the grain growth, while the additions of $Cr_2O_3$ retarded the grain growth.

  • PDF

BiTiO3 첨가에 따른 (Na0.5K0.5)NbO3 세라믹스의 구조적 전기적 특성 (Structural and Electrical Properties of $(Na_{0.5}K_{0.5})NbO_3$ ceramics addition with $BiTiO_3$)

  • 이태호;김대영;조서현;정광호;이성갑;남성필;김영곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1465-1466
    • /
    • 2011
  • We have studied structural and electrical properties of $(Na_{0.5}K_{0.5})NbO_3$ ceramics addition with $BiTiO_3$. The $(Na_{0.5}K_{0.5})NbO_3-BiTiO_3$ ceramics were fabricated by the conventional mixed oxide method, their dielectric and piezoelectric properties were investigated with the variations of additvie amount $BiTiO_3$. At the sintering temperature of $1130^{\circ}C$, the density, dielectric constant, grain size of 0.05mol% $BiTiO_3$ specimen showed the values of 4.69 g/$cm^3$, 898 and $24.8{\mu}m$.

  • PDF

무연 $Bi(Na,K)TiO_3$계 세라믹을 이용한 압력센서의 전기적 특성 (Electrical Properties of pressure sensor using a Pb-free $Bi(Na,K)TiO_3-SrTiO_3$ Ceramics)

  • 이현석;류주현;정영호;홍재일;정광현;류성림
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.387-391
    • /
    • 2004
  • [ $(Bi_{1/2}Na_{1/2})TiO_3$ ](BNT) is considered to be an excellent candidate for the key material of lead-free piezoelectric ceramic due to properties of strong ferroelectricity with a relatively large remanent polarization $Pr=38{\mu}C/cm^2$, and a large coercive field, Ec=73KV/cm. In this study, electrical properties of pressure sensor using a $0.96Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}TiO_3+0.04SrTiO_3+0.2wt%La_2O_3$ ceramics are investigated. Resonant frequency of pressure sensor was decreased with increasing pressure. However, its anti-resonant frequency was increased with increasing pressure.

  • PDF

Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제8권5호
    • /
    • pp.433-447
    • /
    • 2011
  • The present paper addresses the nonlinear response of a FG square plate with two smart layers as a sensor and actuator under pressure. Geometric nonlinearity was considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential was assumed as a quadratic function along the thickness direction and trigonometric function along the planar coordinate. By evaluating the mechanical and electrical energy, the total energy equation can be minimized with respect to amplitude of displacements and electrical potential. The effect of non homogenous index was investigated on the responses of the system. Obtained results indicate that with increasing the non homogenous index, the displacements and electric potential tend to an asymptotic value. Displacements and electric potential can be presented in terms of planar coordinate system. A linear analysis was employed and then the achieved results are compared with those results that are obtained using the nonlinear analysis. The effect of the geometric nonlinearity is investigated by using the comparison between the linear and nonlinear results. Displacement-load and potential-load curves verified the necessity of a nonlinear analysis rather than a linear analysis. Improvement of the previous results (by the linear analysis) through employing a nonlinear analysis can be presented as novelty of this study.