Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.6.15

Study on the Piezoelectric Energy Harvesting Technology for the Energy Conversion of Vibration in Automobiles  

Lee, Hyeon Yeong (School of Materials Engineering, Yeungnam University)
Kim, Kwangwon (School of Materials Engineering, Yeungnam University)
Ye, Jiwon (School of Materials Engineering, Yeungnam University)
Woo, Suhyeon (School of Materials Engineering, Yeungnam University)
Lee, Geon (School of Materials Engineering, Yeungnam University)
Lee, Seungah (School of Materials Engineering, Yeungnam University)
Jeong, Seong Rok (School of Materials Engineering, Yeungnam University)
Jeong, Seon Hye (School of Materials Engineering, Yeungnam University)
Kim, Ho Seong (School of Materials Engineering, Yeungnam University)
Nam, Ga Hyeon (School of Materials Engineering, Yeungnam University)
Jo, Yun Yeong (School of Materials Engineering, Yeungnam University)
Choi, Han Seung (School of Materials Engineering, Yeungnam University)
Ryu, Jungho (School of Materials Engineering, Yeungnam University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.6, 2021 , pp. 495-504 More about this Journal
Abstract
Energy Harvesting is a technology that can convert wasted energy such as vibration, heat, light, electromagnetic energy, etc. into usable electrical energy. Among them, vibration-based piezoelectric energy harvesting (PEH) has high energy conversion efficiency with a small volume; thus, it is expected to be used in various autonomous powering devices, such as implantable medical devices, wearable devices, and energy harvesting from road or automobiles. In this study, wasted vibration energy in an automobile is converted into electrical energy by high-power piezoelectric materials, and the generated electrical energy is found to be an auxiliary power source for the operation of wireless sensor nodes, LEDs, etc. inside an automobile. In order to properly install the PEH in an automobile, vibration characteristics includes frequency and amplitude at several positions in the automobile is monitored initially and the cantilever structured PEH was designed accordingly. The harvesting properties of fabricated PEH is characterized and installed into the engine part of the automobile, where the vibration amplitude is stable and strong. The feasibility of PEH is confirmed by operating electric components (LEDs) that can be used in practice.
Keywords
Piezoelectric; Energy harvesting; Vibration; Wireless sensor; Automobile;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Y. Lee, Electrical & Electronic Materials, 31, 17 (2018).
2 G. T. Hwang, J. Ryu, and W. H. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 271 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.5.271]   DOI
3 Y. H. Jeong, Trans. KIEE, 63, 18 (2014).   DOI
4 G. B. Yeon, The Magazine of the IEEK, 6, 18 (2013).
5 X. Gao, J. Wu, Y. Yu, and S. Dong, Appl. Phys. Lett., 111, 212904 (2017). [DOI: https:/doi.org/10.1063/1.5001803]   DOI
6 B. C. Lee and G. S. Chung, J. Sens. Sci. Technol., 23, 202 (2014). [DOI: https://doi.org/10.5369/JSST.2014.23.3.202]   DOI
7 W. S. Kang, G. J. Lee, and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 301 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.5.301]   DOI
8 J. C. Moon and J. H. Jeong, J. Korean Soc. Power Syst. Eng., 23, 32 (2019). [DOI: https://doi.org/10.9726/kspse.2019.23.6.032]   DOI
9 S. W. Kim, Y. J. Jeong, and H. C. Lee, J. Korean Powder Metall. Inst., 25, 487 (2018). [DOI: https://doi.org/10.4150/KPMI.2018.25.6.487]   DOI
10 G. Y. Kim, M. Peddigari, K. W. Lim, G. T. Hwang, W. H. Yoon, H. S. Choi, J. W. Lee, and J. Ryu, Electron. Mater. Lett., 15, 61 (2019). [DOI: https://doi.org/10.1007/s13391-018-00103-w]   DOI
11 JEITA EM-4501A, Electrical Test Methods for Piezoelectric Ceramic Vibrators, Revised in October 2015.
12 D. Maurya, P. Kumar, S. Khaleghian, R. Sriramdas, M. G. Kang, R. A. Kishore, V. Kumar, H. C. Song, J. M. Park, S. Taheri, and S. Priya, Appl. Energy, 232, 312 (2018). [DOI: https://doi.org/10.1016/j.apenergy.2018.09.183]   DOI
13 V. Annapureddy, S. M. Na, G. T. Hwang, M. G. Kang, R. Sriramdas, H. Palneedi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, D. S. Park, J. J. Choi, D. Y. Jeong, A. B. Flatau. M. Peddigari, S. Priya, K. H. Kim, and J. Ryu, Energy Environ. Sci., 11, 818 (2018). [DOI: https://doi.org/10.1039/C7EE03429F]   DOI
14 N. Y. Lee, D. C. Kim, D. H. Yeo, J. S. Lee, S. O. Yoon, H. S. Shin, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 355 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.5.355]   DOI
15 H. Song, D. R. Patil, W. H. Yoon, K. H. Kim, C. Choi, J. H. Kim, G. T. Hwang, D. Y. Jeong, and J. Ryu, Energy Environ. Sci., 13, 4238 (2020). [DOI: https://doi.org/10.1039/D0EE01574A]   DOI
16 R. Sriramdas, M. G. Kang, M. Meng, M. Kiani, J. Ryu, M. Sanghadasa, and S. Priya, Adv. Energy Mater., 10, 1903689 (2020). [DOI: https://doi.org/10.1002/aenm.201903689]   DOI