• 제목/요약/키워드: Piezoelectric devices

검색결과 339건 처리시간 0.024초

ME 소자의 저주파 등가회로 모델링 (Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency)

  • 정수태;류지구
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.515-521
    • /
    • 2013
  • Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

MOD 법에 의한 압전 SBN 박막의 성장 온도 의존성 및 특성 (The dependent of growth temperature of piezoelectric SBN Thin Film by Metal Organic Decomposition Process and their properties)

  • 김광식;장건익;어순철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.382-383
    • /
    • 2006
  • The tungsten bronze type of strontium barium niobate(SBN) thin film was synthesized by metal organic decomposion method for SBN stock solution and the SBN thin film process were deposited by spin-coating process on Pt-deposited si-wafer(100) by magnetron sputtering system. The thickness of SBN thin film was 150~200 nm and were optimized for rpm of spin-coater system. The structural variation of SBN thin film was studied by TG-DTA and XRD. The deposited SBN stock solution on annealing at $400{\sim}800^{\circ}C$ a pure tungsten bronze SBN phase and the corresponding. average grain size about 500~1000 nm influenced by annealing temperature. The piezoelectric properties of prepared SBN thin film, the remanent polarization value(2Pr) and coercive field was $1.2{\mu}C/cm^2$ and 2.15V/cm, respectively.

  • PDF

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • 김상우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF

Triboelectric Nanogenerator (TENG)를 위한 Rutile TiO2 박막 성능 및 특성 평가 (Evaluating the performance and characteristics of Rutile TiO2 thin film for Triboelectric Nanogenerator (TENG))

  • 문지현;김한재;김효배;안지훈
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.324-330
    • /
    • 2021
  • As energy harvesting technology becomes important in relation to environmental issues, piezoelectric materials that convert mechanical energy into electrical energy are attracting attention. However, PZT, a representative material for piezoelectricity, is becoming difficult to use due to the problem that its components can cause environmental pollution. For this reason, recent research suggests a triboelectric nanogenerator (TENG) that generates energy through the combined effect of triboelectricity and electric induction for alternative piezoelectric devices. In TENG, electrical power is determined by the dielectric constant, thickness, and grain generation of the charged material. Therefore, in this study, a Rutile phase TiO2 thin film with high dielectric constant was formed using the spin-coating process and the effect of annealing was investigated. For electrical analysis, a TENG device was fabricated using PTFE as a material with an opposite charge, and electrical output according to film thickness and grain formation was comparatively analyzed.

공진주파수 스펙트럼법을 이용한 Composite Resonator 구조에서 압전박막의 특성 평가에 대한 연구 (A Study on the Evaluation of Piezoelectric Thin Film Characteristics in Composite Resonator Structure Using Resonance Spectrum Method)

  • 최준영;장동훈;강성준;윤영섭
    • 대한전자공학회논문지SD
    • /
    • 제42권1호
    • /
    • pp.9-17
    • /
    • 2005
  • 공진주파수 스펙트럼법을 이용하여 ZnO 와 AIN 압전박막의 임피던스 특성 및 전기기계결합계수 특성에 대해 조사하였다. 압전박막의 두께가 얇을수록 전체적인 임피던스 응답 피크의 크기가 감소하였으며, 기판의 두께가 얇을수록 응답 피크의 모드 수가 감소하는 것이 관찰되었다. 입력 Kt² 값으로부터 평가된 Kt² 값을 통해 압전박막의 두께보다 기판의 두께 변화에 대한 영향이 더 큼을 알 수 있었고, 기판의 acoustic 임피던스에 의해서도 Kt² 값이 감소함을 알 수 있었다. 전극 효과가 첨가되면 임피던스 응답 피크의 크기가 감소하였으며, 전극의 acoustic 임피던스가 커짐에 따라 응답피크는 더 작아졌다. 공진주파수 스펙트럼법에서 전극은 질량부하로 고려되기 때문에 전극 효과가 첨가된 경우 Keff² 값은 증가하며, 전극의 acoustic 임피던스가 크면 그 효과는 더 커졌다. 공진주파수 스펙트럼법을 이용한 시뮬레이션을 통해 기판, 압전체, 전극으로 이루어진 composite 공진기의 특성 분석과 설계까지도 가능함을 알 수 있었다.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

An Active Voltage Doubling Rectifier with Unbalanced-Biased Comparators for Piezoelectric Energy Harvesters

  • Liu, Lianxi;Mu, Junchao;Yuan, Wenzhi;Tu, Wei;Zhu, Zhangming;Yang, Yintang
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1226-1235
    • /
    • 2016
  • For wearable health monitoring systems, a fundamental problem is the limited space for storing energy, which can be translated into a short operational life. In this paper, a highly efficient active voltage doubling rectifier with a wide input range for micro-piezoelectric energy harvesting systems is proposed. To obtain a higher output voltage, the Dickson charge pump topology is chosen in this design. By replacing the passive diodes with unbalanced-biased comparator-controlled active counterparts, the proposed rectifier minimizes the voltage losses along the conduction path and solves the reverse leakage problem caused by conventional comparator-controlled active diodes. To improve the rectifier input voltage sensitivity and decrease the minimum operational input voltage, two low power common-gate comparators are introduced in the proposed design. To keep the comparator from oscillating, a positive feedback loop formed by the capacitor C is added to it. Based on the SMIC 0.18-μm standard CMOS process, the proposed rectifier is simulated and implemented. The area of the whole chip is 0.91×0.97 mm2, while the rectifier core occupies only 13% of this area. The measured results show that the proposed rectifier can operate properly with input amplitudes ranging from 0.2 to 1.0V and with frequencies ranging from 20 to 3000 Hz. The proposed rectifier can achieve a 92.5% power conversion efficiency (PCE) with input amplitudes equal to 0.6 V at 200 Hz. The voltage conversion efficiency (VCE) is around 93% for input amplitudes greater than 0.3 V and load resistances larger than 20kΩ.

Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.97-104
    • /
    • 2020
  • Due to the superior properties of nanoparticles, using them has been increased in concrete production technology. In this study, the effect of zinc oxide (ZnO) nanoparticles on the mechanical and smart properties of concrete was studied. At the first, the ZnO nanoparticles are dispersed in water using shaker, magnetic stirrer and ultrasonic devices. The nanoparticles with 3.5, 0.25, 0.75, and 1.0 volume percent are added to the concrete mixture and replaced by the appropriate amount of cement to compare with the control sample without any additives. In order to study the mechanical and smart properties of the concrete, the cubic samples for determining the compressive strength and cylindrical samples for determining tensile strength with different amounts of ZnO nanoparticles are produced and tested. The most important finding of this paper is about the smartness of the concrete due to the piezoelectric properties of the ZnO nanoparticles. In other words, the concrete in this study can produce the voltage when subjected to mechanical load and vice versa it can induce the mechanical displacement when subjected to external voltage. The experimental results show that the best volume percent for ZnO nanoparticles in 28-day samples is 0.5%. In other words, adding 0.5% ZnO nanoparticles to the concrete instead of cement leads to increases of 18.70% and 3.77% in the compressive and tensile strengths, respectively. In addition, it shows the best direct and reverse piezoelectric properties. It is also worth to mention that adding 3.5% zinc oxide nanoparticles, the setting of cement is stopped in the concrete mixture.

Fabrication of Piezoelectric Micro Bending Actuators Using Sol-Gel Thick PZT films

  • Park, Joon-Shik;Yang, Seong-Jun;Park, Kwang-Bum;Yoon, Dae-Won;Park, Hyo-Derk;Kang, Sung-Goon;Lee, Nak-Kyu;Na, Kyoung-Hoan
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.1-4
    • /
    • 2004
  • Fabrication and electrical and mechanical properties of piezoelectric micro bending actuators (PMBA) using sol-gel-multi-coated thick PZT films and MEMS processes were investigated. PMBA could be used for design and fabrication of micro fluidic devices, for example, micro-pumps, micro dispensers, and so on. PMBA were fabricated using 2 um thick PZT films on Pt (350 nm)/$SiO_2$ (500 nm)/Si ($300\mu\textrm{m}$) substrates and MEMS processes. 7 types of PMBA were fabricated with areas of silicon diaphragms, PZT films and top electrodes. When the sizes of silicon diaphragms, PZT films and Pt top electrodes were reduced from 3000$\times$$1389\mu\textrm{m}$, 4000$\times$$1000\mu\textrm{m}$ and 4000$\times$$900\mu\textrm{m}$ down to 14%, 14% and 11 % of them, respectively, the center displacements of PMBA were decreased from 0.68 um to 0.10 um at 5 Hz and 12 Vpp. So, PMBA with large areas showed larger displacements than PMBA with small areas and experimental results were also good agreement with the plate and shell theory.

  • PDF

치과 임플란트용 골융합 측정기의 설계 및 평가 (Design and Evaluation of Osseointegration Analysis System for Dental Implant)

  • 이주희;김창일;백종후;조정호;전명표;정영훈;이영진;이정배;이승대
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.188-193
    • /
    • 2011
  • The osseointegration of dental implant is influenced by many factors such as surface geometry, loading and the amount of bone. Thus, stability of the dental implant should be checked periodically. In order to test the stability of dental implant by using resonance frequency analysis, we designed a structure of transducers and fabricated a piezoelectric devices. Using finite element analysis, the thickness and length of piezoelectric device and transducers were tailorized and the optimized frequency of 10 kHz was obtained. The resonance frequency from simulation analysis and evaluation was estimated to be similar as 10 kHz. The osseointegration was further enhanced with increasing frequency from the evaluation result of the finite element analysis.