• 제목/요약/키워드: Piezoelectric Vibration Energy Harvesting

검색결과 109건 처리시간 0.037초

Analytical Models to Predict Power Harvesting with Piezoelectric Transducer

  • Muppala, Raghava Raju;Raju, K. Padma;Moon, Nam-Mee;Jung, Baek-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2008
  • Advances in low power design open the possibility to harvest energy from the environment to power electronic circuits. Electrical energy can be harvested from piezoelectric transducer. Piezoelectric materials can be used as mechanisms to transfer mechanical energy usually vibrating system into electrical energy that can be stored and used to power other devices. Micro- to milli-watts power can be generated from vibrating system. We developed definitive and analytical models to predict the power generated from a cantilever beam attached with piezoelectric transducer. Analytical models are pin-force method, enhanced pin-force method and Euler-Bernoulli method. Harmonic oscillations and random noise will be the two different forcing functions used to drive each system. It has been selected the best model for generating electric power based upon the analytical results obtained.

압전 진동 에너지 수확 장치의 에너지 변환 효율에 대한 고찰 (On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices)

  • 김재은
    • 대한기계학회논문집A
    • /
    • 제39권5호
    • /
    • pp.499-505
    • /
    • 2015
  • 압전 진동 에너지 수확 장치의 설계 및 성능 평가 시 에너지 변환 효율을 고려하는 것은 매우 당연하다. 본 연구에서 고려하는 에너지 변환 효율은 부하 저항이 부착된 압전 진동 에너지 수확 장치에 입력되는 가진 진동 파워 대비 전기 출력 값으로 정의된다. 기존의 연구에서는 근사적으로 임피던스 정합된 부하 저항에서의 전기 출력을 고려한 반면, 본 연구에서는 최적의 임피던스 정합 값을 사용하여 새롭게 에너지 변환 효율 식을 유도하였다. 유도된 식의 타당성을 검증하기 위해 3 개의 서로 다른 전기-역학 연성 계수 값을 갖는 진동 에너지 수확 장치에 대한 유한 요소 해석 결과를 이용하였다. 또한, 부하 저항의 임피던스 정합 방법의 차이에 따른 에너지 변환 및 변환 효율 특성을 살펴보았다.

Adaptive MR damper cable control system based on piezoelectric power harvesting

  • Guan, Xinchun;Huang, Yonghu;Li, Hui;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.33-46
    • /
    • 2012
  • To reduce the vibration of cable-stayed bridges, conventional magnetorheological (MR) damper control system (CMRDS), with separate power supply, sensors and controllers, is widely investigated. In this paper, to improve the reliability and performance of the control system, one adaptive MR damper control system (AMRDS) consisting of MR damper and piezoelectric energy harvester (PEH) is proposed. According to piezoelectric effect, PEH can produce energy for powering MR damper. The energy is proportional to the product of the cable displacement and velocity. Due to the damping force changing with the energy, the new system can be adjustable to reduce the cable vibration. Compared with CMRDS, the new system is structurally simplified, replacing external sensor, power supply and controller with PEH. In the paper, taking the N26 cable of Shandong Binzhou Yellow River Bridge as example, the design method for the whole AMRDS is given, and simple formulas for PEH are derived. To verify the effectiveness of the proposed adaptive control system, the performance is compared with active control case and simple Bang-Bang semi-active control case. It is shown that AMRDS is better than simple Bang-Bang semi-active control case, and still needed to be improved in comparison with active control case.

우주용 냉각기의 미소진동을 이용한 에너지 수확 시스템의 실험적 성능검증 (Experimental Performance Verification of Energy-Harvesting System Using the Micro-vibration of the Spaceborne Cryocooler)

  • 정현모;권성철;오현웅
    • 항공우주시스템공학회지
    • /
    • 제10권3호
    • /
    • pp.15-22
    • /
    • 2016
  • The on-board appendages of satellites with mechanical moving parts such as the fly-wheel, the control-moment gyro, the cryocooler, and the gimbal-type directional antenna can generate an undesirable micro-vibration disturbance, which is one of the main causes of the image-quality degradation that affects high-resolution observation satellites. Consequently, the isolation of the micro-vibration issue has always been considered as salient, and the micro-vibration is therefore the focus of this study wherein a complex system that can provide the dual functions of a guaranteed vibration-isolation performance and electrical energy harvesting is proposed. The vibration-isolation and energy-harvesting performances of the complex system are predicted through a numerical analysis based on the characteristics that are obtained from component-level tests. In addition, the effectiveness of the complex system that is proposed in this study is verified through an assembly-level functional-performance test.

AlN 압전 진동형 마이크로 에너지 하베스터 설계 및 분석 (Design and Analysis of AlN Piezoelectric Micro Energy Harvester Based on Vibration)

  • 이병철;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제23권5호
    • /
    • pp.424-428
    • /
    • 2010
  • This paper describes the design and analysis of AlN piezoelectric micro energy harvester. The harvester was designed to convert ambient vibration energy to electrical power as a AlN piezoelectric material compatible with CMOS (complementary metal oxide semiconductor) process. To cut off the leakage current, AlN was used as the insulating layer. Also, Mo was used for the excellent c-axis crystal growth as the bottom electrode. The AlN harvester which it has the low operating frequency was designed by using the ANSYS FEA (finite element analysis). From the simulation results, the resonance frequency of designed model is about 360 Hz and analyzed the bending mode, displacement and expectation output.

미소에너지 하베스팅용 적층 벤더 압전 소자 성능 연구 (Bender-type Multilayer Piezoelectric Devices for Energy Harvesting)

  • 정순종;김민수;김인성;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.193-193
    • /
    • 2008
  • Wearable and ubiquitous micro systems will be greatly growing and their related devices should be self-powered in order to avoid the replacement of finite power sources, for example, by scavenging energy from the environment. With ever reducing power requirements of both analog and digital circuits, power scavenging approaches are becoming increasingly realistic. One approach is to drive an electromechanical converter from ambient motion or vibration. Vibration-driven generators based on electromagnetic, electrostatic and piezoelectric technologies have been demonstrated. Among various generator types proposed so far, piezoelectric generator possesses considerable potential in micro system. To overcome low mechanical-to-electric energy conversion, the piezoelectric device should activate in resonance mode in response to external vibration. Normally, the external vibration excretes at low frequency ranging 0.1 to 200 Hz, whereas the resonant frequencies of the devices are fixed as constant. Therefore, keeping their resonant mode in varying external vibration can be one of important points in enhancing the conversion efficiency. We investigated the possibility of use of multi-bender type piezoelectric devices. To match the external vibration frequency with the device resonant frequency, the various devices with different resonant frequency were chosen.

  • PDF

[001] 및 [011] 방향 분극의 압전 단결정 PMN-PZT를 이용한 진동 에너지 수확 특성 (Performance Characteristics of Vibration Energy Harvesting Using [001] and [011]-Poled PMN-PZT Single Crystals)

  • 김재은;김영철;선경호
    • 한국소음진동공학회논문집
    • /
    • 제24권11호
    • /
    • pp.890-897
    • /
    • 2014
  • This work investigated the electromechanical performance of a cantilevered vibration energy harvester incorporating the single crystal PMN-PZT, manufactured with the most recent technology of solid-state single crystal growth. The performances of single crystal PMN-PZTs with two different crystallographic axes such as [011] and [001] are compared with those of PZT ceramics. From the investigations, it is shown that the [001]-poled PMN-PZT is advantageous for the excitations containing single dominant frequency component, while the single crystal [011]-$d_{32}$ is superior in terms of the energy storage density and energy conversion efficiency.