• Title/Summary/Keyword: Piezoelectric Ultrasonic Linear Motor

Search Result 54, Processing Time 0.044 seconds

Driving Characteristics of L1-B8 Mode Ultrasonic Motor (L1-B8형 초음파 모터의 구동 특성)

  • Kim, Hang-Sik;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.356-359
    • /
    • 2003
  • This paper deals with a flat type ultrasonic motor, which uses a longitudinal-bending multi mode vibrator of rectangular form. This ultrasonic motor was designed by combination of the first longitudinal and eighth bending mode, and the motor consisted of a straight aluminum alloy bar bonded with piezoelectric ceramic elements as a driving element. The geometrical dimensions of the rectangular aluminum vibrator were determined by Euler-Bernoulli theory In the experimental device, piezoelectric ceramics ( a piece of ceramic for the L-mode, $24\;{\times}\;8\;{\times}\;1[mm]$, and four pieces for the B-mode, $12.5\;{\times}\;8\;{\times}\;1[mm]$) were attached to one side of a aluminum plate($100\;{\times}\;8\;{\times}\;1[mm]$), and the stator was supported with a plastic case. As results, no-load rpm was 50[rev./m] when applied voltage was 150[Vrms] at the resonance frequency, and as the voltage was increased, the rpm was increased.

  • PDF

Analysis of Linear-type Ultrasonic Motor Using A Finite Element Method (유한요소해석 프로그램에 의한 리니어 초음파 모터의 변위량 해석)

  • 이동준;임태빈;강성택;김영욱;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • This paper is a study on a linear ultrasonic motor with a first longitudinal$(L_1)$ and fourth bending $(B_4)$ double-mode rectangular plate. The stator vibrator is composed of an elastic material plate and of a piezo-ceramic element having a motion by electrical excitation. Each strain vector differs by $90^{\circ}$ generate travelling wave with the elliptical displacement motion of a point on the surface. To magnify displacement of longitudinal direction in elliptical displacement motion, the motor has a mechanism of the.displacement enlargement. In this paper, the vibration shape of the stator is simulated using the finite element method. A detailed model considered of the piezoelectric effect and of the exact geometry of the stator is used to calculate the displacement. The position of displacement mechanism is decided by the maximum displacement.

  • PDF

The FEA of the Multy-Layered ultrasonic motor (적층형 초음파 모터의 유한요소해석)

  • Kim, Sung-Hyun;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.304-307
    • /
    • 2003
  • In this paper, stacked piezoelectric ceramics were used for obtaining a large vibration for a small ultrasonic motor which is useable for the both linear drive and rotational drive. We studied this motor through the finite element analysis method and the simulated driving characteristics were presented. As results, the displacement of the tip of the stator was increased when the layers of the ceramics were increased. Also, by inserting additional aluminum plates between the ceramics and the aluminum bar, the displacement were amplified. In this model, two voltages which have 90 degree phase difference were applied for the bi-directional movement.

  • PDF

Fabrication of Linear Ultrasonic Motor and Effects of the Pressing Force Applied to Rotors on Characteristics (선형 초음파 전동기의 제작과 특성에 미치는 회전자의 가압력)

  • Lee, Myung-Hun;U, Sang-Ho;Kim, Young-Gyun;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.741-743
    • /
    • 2000
  • In this paper the relationship between the pressing force applied to rotors and the characteristics of ultrasonic motor are discussed. The characteristics of ultrasonic motor using a piezoelectric vibrator were systematically studied. And these were applied to the construction of a card forwarding device. The principle of ultrasonic motor is to use an elliptical motion generated on the side of the vibrator, and the elliptical motion of the ultrasonic motor was obtained by complex oscillation of $L_1-B_4$ mode. As the experimental results. the forwarding speed of the card increased linearly as the pressing force applied to rotors increased. The forwarding speed of the card was 16.0 cm/s when the pressing force applied to rotors was 1 N. The forwarding force of the card increased linearly as the pressing force applied to rotors increased. The forwarding force of the card was 398 mN when the pressing force applied to rotors was 1 N. Therefore, this ultrasonic motor can be expected to be used for card-forwarding device and so on.

  • PDF

Characteristics of disk-type linear Ultrasonic Motor (disk-type 초음파모터의 톡성평가)

  • Yun, Yong-Jin;Park, Sung-Hee;Kang, Sung-Hwa;Lim, Ki-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.168-171
    • /
    • 2005
  • In this paper, disk-type ultrasonic motor using a combination of radial and bending vibration modes is newly designed and fabricated. The characteristics of the test motor are also measured. By means of traveling elastic wave induced at the surface of circumference of the elastic disk, a steel bar in contact with the surface of circumferenceof elastic disk bonded onto the piezoelectric ceramic disks is driven in both directions by changing the sine and cosine voltage inputs. The stator of the motor is composed of two sheets of piezoelectric ceramic disk to bond onto both surfaces of a elastic disk, respectively. As the results, the diameter of elastic body is increased, the resonant frequency is decreased. The resonant frequency of the stator is about 92 kHz, which is composed with piezoelectric ceramic disks of 28 mm in diameter and 2 mm in thickness, and an elastic body of 32 mm in diameter and 2 mm in thickness. A driving voltage of 20 Vpp produces 200 rpm with a torque of 1Nm and an efficiency of about 10 %.

  • PDF

The Characteristics of Efficiency and Torque in $L_1-B_8$ mode USM Having Linear Movement (선형 운동하는 $L_1-B_8$ 모드 초음파 전동기의 효율과 토크 특성)

  • U, Sang-Ho;Shin, Soon-In;Kim, Jin-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.585-588
    • /
    • 2002
  • The USM uses friction between a mobile part (rotor) and a vibration part(stator), which is different from the principle of the conventional motor based on the interaction of electric and magnetic fields. In this thesis, a flat-type $L_1-B_8$ mode USM was designed and fabricated the characteristics of an ultrasonic vibration. The results of fabricated USM are as follows: (1) In case of ultrasonic motor with elastic-body of stainless, when applied voltage, frequency, pressing force of rotor were 50 [V], 27.9 [kHz], 1.5 [N], 5.0[mN m] respectively, the speed of revolution could be presented up to 0 [cm/s]. (2) In case of ultrasonic motor with elastic-body of brass, when applied voltage, frequency, pressing force of rotor were 50 [V], 21.4 [kHz], 1.5 [N], 1.4[mN m]respectively, the speed of rotor revolution was presented up to 0 [cm/s]. (3) The USM of elastic-body of stainless showing 1.17[%], somewhat low, in the maximum efficiency according to torque was superior to the USM of elastic-body of brass showing 0.34 [%]. The Flat-type $L_1-B_8$ mode USM had characteristics of typical drooping torque-speed, large torque and high speed, and operating in both directions by phase reversal.

  • PDF

Characteristics of Disk-type Linear Ultrasonic Motor for Application to x-y Stage

  • Lim Kee-Joe;Park Seong-Bee;Yun Yong-Jin;Lee Kee-Young;Kang Seong-Hwa;Lee Jong-Sub;Jeong Su-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 2006
  • In this paper, a disk-type ultrasonic motor using a combination of radial and bending vibration modes is newly designed and fabricated. The characteristics of the test motor are also measured. By means of traveling elastic wave induced at the surface of circumference of the elastic disk, a steel bar in contact with the surface of circumference of the elastic disk bonded onto the piezoelectric ceramic disks is driven in both directions by changing the sine and cosine voltage inputs. The stator of the motor is composed of two sheets of piezoelectric ceramic disks to bond onto both surfaces of an elastic disk, respectively. As a result, the diameter of the elastic body is increased and the resonant frequency is decreased. The resonant frequency of the stator is about 92 kHz, which is composed with piezoelectric ceramic disks of 28 mm in diameter and 2 mm in thickness, and an elastic body of 32 mm in diameter and 2 mm in thickness. A driving voltage of 20 VPP Produces 200 rpm with a torque of 1Nm and an efficiency of about 10%.

Electrical properties of multilayer piezoelectric actuator with the variations of temperature (적층 압전액츄억이터 소자의 온도해 따른 전기적 특성)

  • Lee, Kab-Soo;Lee, Il-Ha;Yoo, Ju-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.63-64
    • /
    • 2006
  • In this paper, multilayer piezoelectric actuator was fabricated in order to develop ultrasonic linear motor. Multilayer actuator showed a high density of 7.78[$g/cm^3$], a large effective electromechanical coupling factor($K_{eff}$) of 0.259, a high mechanical quality factor( Qm ') of 1301, and high capacitance(c) of 19.32[nF]. Curie temperature was $343[^{\circ}C]$.

  • PDF