• Title/Summary/Keyword: Piezoelectric Single Crystal

Search Result 94, Processing Time 0.029 seconds

Fabrication of a PMN-PZT needle hydrophone for photoacoustic imaging (광음향 영상화를 위한 PMN-PZT 바늘형 수중청음기 제작)

  • Fan, Xiaofeng;Cao, Yonggang;Ha, Kanglyeol;Kim, Moojoon;Kang, Hyun Wook;Oh, Junghwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2016
  • For application to several MHz photoacoustic imaging systems, a needle hydrophone was designed and fabricated by using PMN-PZT piezoelectric single crystal, and its characteristics were evaluated through comparison with a commercial PVDF(Polybinylidene Fluoride) hydrophone of which receiving sensitivity is known. The simulation using the KLM model results show that the peak receiving impulse response for $50{\Omega}$ terminating impedance of the fabricated hydrophone is -261.6 dB re $1V/{\mu}Pa$ and the frequency response is relatively flat over 2 ~ 12 MHz with fluctuation less than 5 dB. The measurement results using tone burst signals also show that it has higher (ave. 10.9 dB) sensitivity than the commercial hydrophone in 2 ~ 8 MHz, and the receiving sensitivity of $-255.8{\pm}2.8$ dB re $1V/{\mu}Pa$ was measured for the fabricated hydrophone. In addition, it is known that the photoacoustic signals and the image of a hair obtained by a mechanical scanned photoacoustic imaging system with the fabricated hydrophone were bigger and better than those obtained with the commercial hydrophone.

Development of an SH-SAW Sensor for Protein Measurement (단백질 측정용 SH-SAW 센서 개발)

  • 권용준;김재호;고광락;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • We developed SH-SAW sensors to detect protein molecules in liquid solutions applying a particular antibody thin film on the delay line of transverse SAW devices. The antibody investigated was human-immune-globulin G (HigG) to hold the antigens (anti-HigG) in the protein solution. We fabricated the sensor generating 100 MHz with the piezoelectric single crystal LiTaO₃. We measured the frequency change of the sensor by adding the anti-body concentration on SAM (self assembled monolayer) deposited on the Au layer. The sensor showed stable response to the mass loading effects of the anti-HigG molecules with the sensitivity up to 10.8 ng/ml/Hz at noise level 400 Hz below.

Fabrication and Characteristics of Surface-Acoustic-Wave Sensors for Detecting $NO_2$ GaS ($NO_2$ 가스 감지를 위한 표면탄성파 센서의 제작 및 특성)

  • Choi, D.H.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 1999
  • Surface acoustic wave (SAW) device is very attractive for gas sensor applications because of their small size, low cost, high sensitivity, and good reliability. A dual delay line surface acoustic wave $NO_2$ gas sensors have been designed and fabricated on the $LiTaO_3$ piezoelectric single crystal substrate. The capacitance of the fabricated IDTs was 326.34pF at the frequency of 79.3MHz. The maximum reflection loss of the impedence-matched IDTs was -16.74dB at the frequency of 79.3MHz. The SAW oscillator was constructed and the stable oscillation was obtained by controlling the gain of rf amplifier properly. The oscillation frequency shift of the SAW oscillator to the $NO_2$ gas was 28Hz/ppm.

  • PDF

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Development of Ultrasonic Sensors for Simultaneous Measurement of Longitudinal and Shear Waves (종-횡파 동시 측정용 초음파 센서의 개발)

  • Kim, Yeon-Bo;Rho, Yong-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • A study has been made on the fabrication of a dual mode(a longitudinal and shear mode) ultrasonic sensor using a single PZT piezoelectric ceramic element. We investigated the mechanism of the dual mode sensor that generated both of the longitudinal and the shear waves simultaneously with the single PZT element. Through the analysis of analytic wave propagation equations, all the possible crystal cuts have been examined to determine appropriate Euler transformation angles for efficient excitations of the dual modes. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves of equal strength. Experimental examination of the waveform on a delay line(STS303) setup confirms that the ultrasonic sensor can transmit and detect both longitudinal and shear waves simultaneously.

  • PDF

Preparation and Properties of Poly(vinylidene fluoride) Multilayer Films (Poly(vinylidene fluoride) 다층 필름의 제조 및 특성)

  • Son, Tae-Won;Kim, Jong-Hwan;Choi, Won-Mi;Han, Fei-Fei;Kwon, Oh-Kyeong
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.130-135
    • /
    • 2011
  • Along with the fast development of electronics, the demands of portable electronics and wireless sensors are growing rapidly. The need for self-powering materials capable of powering the electrical devices attached to them is increasing, The piezoelectric effect of polyvinylidene fluoride (PVDF) can be used for this purpose. PVDF has a special crystal structure consisting of a ${\beta}$-phase that can produce piezoelectricity. In this paper, multilayer PVDF films were fabricated to increase the ${\beta}$-phase content. A solution of 10% concentration N;N-dimethylacetamide (DMAc) in PVDF (PVDF/DMAc) was used to fabricate the films via spin coating technique with the following optimum process parameters: a spin rate of 850 rpm, spin time of 60 s, drying temperature of $60^{\circ}C$, and drying time of 30 min, Compared with single-layer PVDF films, the multilayer films exhibited higher ${\beta}$-phase content. The ${\beta}$-phase content of the films increased gradually with increasing number of layers until 4, Maximum ratio of ${\beta}$-phase content was 7.72.

Structural, Dielectric and Field-Induced Strain Properties of La-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics

  • Hussain, Ali;Maqbool, Adnan;Malik, Rizwan Ahmed;Zaman, Arif;Lee, Jae Hong;Song, Tae Kwon;Lee, Jae Hyun;Kim, Won Jeong;Kim, Myong Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.566-570
    • /
    • 2015
  • $Bi_{0.5}Na_{0.5}TiO_3$ (BNT) based ceramics are considered potential lead-free alternatives for $Pb(Zr,Ti)O_3$(PZT) based ceramics in various applications such as sensors, actuators and transducers. However, BNT-based ceramics have lower electromechanical performance as compared with PZT based ceramics. Therefore, in this work, lead-free bulk $0.99[(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}]_{(1-x)}La_xTiO_3-0.01SrZO_3$ (BNBTLax-SZ, with x = 0, 0.01, 0.02) ceramics were synthesized by a conventional solid state reaction The crystal structure, dielectric response, degree of diffuseness and electric-field-induced strain properties were investigated as a function of different La concentrations. All samples were crystallized into a single phase perovskite structure. The temperature dependent dielectric response of La-modified BNBT-SZ ceramics showed lower dielectric response and improved field-induced strain response. The field induced strain increased from 0.17%_for pure BNBT-SZ to 0.38 % for 1 mol.% La-modified BNBT-SZ ceramics at an applied electric field of 6 kV/mm. These results show that La-modified BNBT-SZ ceramic system is expected to be a new candidate material for lead-free electronic devices.

Strain characteristics and electrical properties of [Li0.055(K0.5Na0.5)0.945](Nb1-xTax)O3 ceramics

  • Lee, Jong-Kyu;Cho, Jeng-Ho;Kim, Byung-Ik;Kim, Eung Soo
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.341-345
    • /
    • 2012
  • [Li0.055(K0.5Na0.5)0.945](Nb1-xTax)O3 (0.05 ≤ x ≤ 0.25) ceramics were prepared by the partial sol-gel (PSG) method to improve the microstructure homogeneity of Ta5+ ion and were compared to those prepared by the conventional mixed oxide (CMO) method. For the PSG method, Ta(OC2H5)5 was directly reacted with calcined [Li0.055(K0.5Na0.5)0.945]NbO3 powders and the specimens sintered at 1100 ℃ for 5 hrs showed a single phase with a perovskite structure. Compared to the specimens prepared by conventional mixed oxide powders, the relative ratio of tetragonal phase to orthorhombic phase of the sintered specimens prepared by Ta(OC2H5)5 was larger than that of the sintered specimens prepared by Ta2O5. The electromechanical coupling factor (kp), piezoelectric constant (d33) and dielectric constant (εr) of the sintered specimens were increased with Ta5+ content. These results could be attributed to the decrease of the orthorhombic-tetragonal polymorphic phase transition temperature (To-t), which could be evaluated by oxygen octahedral distortion. Strain of the sintered specimens prepared by the PSG method was higher than that of specimens prepared by the CMO method due to the increase of relative density. The effects of crystal structure on the strain characteristics of the specimens were also discussed.

Fabrication and Electrical Properties of High Tc $A_{2}B_{2}O_{7}$ Piezoelectric Ceramics Using the Powders Prepared by the Chemical Coprecipitation Method (화학적공침법에 의한 $A_{2}B_{2}O_{7}$ 고온압전세라믹스의 제작과 전기적 특성)

  • Son, Chang-Heon;Jeon, Sang-Jae;Nam, Hyo-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.316-327
    • /
    • 1997
  • Polycrystalline $Sr_{2}Nb_{2}O_{7}$ and $La_{2}Ti_{2}O_{7}$ ceramics with very high Curie temperatures were synthesized by the chemical coprecipitation method (CCP). The powders synthesized were identified by XRD and their sintering behavior and physical properties were studied. The grain-orientation and electrical properties of sintered ceramics were investigated as a function of firing temperature. Single phase could be obtained by CCP method at temperature lower than that of the conventional method by 100 - $150^{\circ}C$. Strontium niobate, $Sr_{2}Nb_{2}O_{7}$, powder was Prepared by CCP method at temperatures as low as $800^{\circ}C$ via intermediate phase of $Sr_{5}Nb_{4}O_{15}$ formed at $700^{\circ}C$. The resulting CCP-derived powder was observed to have finer and more uniform particle size distribution than those obtained through the conventional or the molten salt synthesis method. Sintering of CCP-derived $Sr_{2}Nb_{2}O_{7}$ powder at $1500^{\circ}C$ yielded a highly dense ceramics with 97% theoretical density. Very high grain-orientation developed along the (0k0) direction was observed by SEM, which resulted in anisotropic dielectric properties of the sintered samples, with the dielectric constant values approaching those for single crystal.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF