Browse > Article

Preparation and Properties of Poly(vinylidene fluoride) Multilayer Films  

Son, Tae-Won (School of Textiles, Yeungnam University)
Kim, Jong-Hwan (Department of Textile Engineering, Yeungnam University)
Choi, Won-Mi (Department of Textile Engineering, Yeungnam University)
Han, Fei-Fei (B.S.G, Ltd.)
Kwon, Oh-Kyeong (B.S.G, Ltd.)
Publication Information
Polymer(Korea) / v.35, no.2, 2011 , pp. 130-135 More about this Journal
Abstract
Along with the fast development of electronics, the demands of portable electronics and wireless sensors are growing rapidly. The need for self-powering materials capable of powering the electrical devices attached to them is increasing, The piezoelectric effect of polyvinylidene fluoride (PVDF) can be used for this purpose. PVDF has a special crystal structure consisting of a ${\beta}$-phase that can produce piezoelectricity. In this paper, multilayer PVDF films were fabricated to increase the ${\beta}$-phase content. A solution of 10% concentration N;N-dimethylacetamide (DMAc) in PVDF (PVDF/DMAc) was used to fabricate the films via spin coating technique with the following optimum process parameters: a spin rate of 850 rpm, spin time of 60 s, drying temperature of $60^{\circ}C$, and drying time of 30 min, Compared with single-layer PVDF films, the multilayer films exhibited higher ${\beta}$-phase content. The ${\beta}$-phase content of the films increased gradually with increasing number of layers until 4, Maximum ratio of ${\beta}$-phase content was 7.72.
Keywords
spin coating; PVDF; multilayer film; piezoelectricity;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. Samatham and K. J. Kim, Polym. Eng. Sci., 46, 7 (2006).
2 R. J. Gregorio and M. Cestari, J. Polym. Sci. Part B: Polym. Phys., 32, 5 (1994).
3 B. C. Kim, C. G. Choi, and S. P. Han, Polymer(Korea), 26, 4 (2002).
4 Z. Zhao, J. Li, X. Yuan, and X. Li, J. Appl. Polym. Sci., 97, 2 (2004).
5 E. Benedetti, S. Catanorchi, and A. D. Alessio, Polym. Inter., 41, 1 (1996).   DOI   ScienceOn
6 Y. Jiang, Y. Ye, J. Yu, and Z. Wu, Polym. Eng. Sci., 47, 9 (2007).
7 M. Nasir and H. Matsumoto, J. Polym. Sci. Part B: Polym. Phys., 44, 5 (2006).
8 S. W. Choi, J. R. Kim, Y. R. Ahn, and S. M. Jo, Chem. Mater., 19, 1 (2007).   DOI   ScienceOn
9 B. Hwa and B. C. Kim, J. Korean Fiber Soc., 41, 6 (2004).
10 M. Benz, W. B. Euler, and O. J. Gregory, Macromolecules, 35, 7 (2002).
11 H. A. Sodano and D. J. Inman, JIMSS, 16, 10 (2005).
12 http://www.clean.cise.columbia.edu/process/spintheory.pdf.
13 J. Kymissis, C. Kendall, and J. Paradiso, Parasitic Power Harvesting in Shoes, Physics and Media Group MIT Media Laboratory, August (1998).
14 J. Granstrom, J. Feenstra, H. A. Sodano, and K. Farinholt, Smart Mater. Struct., 16, 1810 (2007).   DOI   ScienceOn
15 Y. Yiquan, S. Binwen, and L. Zongjie, IEEE T Ultrason. Ferr. and Frequency Control, 42, 5 (1995).
16 H. A. Sodano, G. Park, and D. J. Inman, An International J. Experimental Mechanics, 40, 2 (2004).
17 H. A. Sodano, Daniel J. Inman, and G. H. Park, The Shock and Vibration Digest, 36, 3 (2004).
18 E. Klimiec, W. Zaraska, and K. Zaraskak, Microelectronics Reliability, 48, 6 (2008).
19 I. Tasaki, Paul M. Byrne, and M. Masumura, Jpn. J. Physiol., 37, 4 (1987).
20 J. Zheng, A. He, J. Li, and Charles C. Han, Macromol. Rapid Comm., 28, 22 (2007).
21 K. Tashiro, H. Tadokoro, and M. Kobayashi, Ferroelectrics, 32, 1 (1981).   DOI   ScienceOn
22 B. S. Kim and Y. J. Sang, Polymer(Korea), 20, 2 (1996).
23 G. M. Kamath and A. R. Upadhya, Smart Materials and Applications, REACH Symposium, Bangalore, March 7-10, p.2 (2007).
24 P. Sajkiewicz, A. Wasiak, and Z. Goclowski, Eur. Polym. J., 35, 3 (1998).