• Title/Summary/Keyword: Piezoelectric Constant

Search Result 477, Processing Time 0.027 seconds

Characteristics of Piezoelectric Microspeakers according to the Material Properties (물성변화에 따른 압전형 마이크로스피커의 특성)

  • Jeong, Kyong-Shik;Cho, Hee-Chan;Yi, Seung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.556-561
    • /
    • 2008
  • This paper reports the characteristics of piezoelectric microspeakers that are audible in open air with high quality piezoelectric AlN thin film according to the materials properties. When we use a tensile-stressed silicon nitride diaphragm as a supporting layer, the Sound Pressure Level (SPL) is relatively small and constant at low frequency region and shows about 70 dB at 10 kHz. However, in case of a compressively stressed composite diaphragm, the SPL of the fabricated microspeakers shows higher output pressure than those of a tensile-stressed diaphragm. It produces more than 66 dB from 100 Hz to 15 kHz and the highest SPL is about 100 dB at 9.3 kHz with $20V_{peak-to-peak}$, sinusoidal input biases and at 10 mm distances from the fabricated microspeakers to the reference microphone. From the experimental results, it is superior to have a compressively composite diaphragm in order to produce a high SPL in piezoelectric microspeaker.

Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics for multilayer piezoelectric transformer with the variations of sintering times (적층 압전변압기용 저온소결 PMN-PZT 압전세라믹의 소성시간에 따른 미세구조 및 압전특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Lee, Sang-Ho;Paik, Dong-Soo;Jeong, Yeong-Ho;Yoon, Hyun-Sang;Im, In-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.425-430
    • /
    • 2004
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramics were manufactured with the variations of sintering times, and their microstructural, piezoelectric and dielectric properties were investigated. To manufacture multilayer piezoelectric transformer, the low temperature sintering composition is need, hence, $Li_2CO_3$ and $Bi_2O_3$ were used as sintering aids and the specimens were sintered during 30, 60, 90, 120, 150 and 180 minutes, respectively. At the specimen sintered during 90 minute, mechanical quality factor(Qm), electromechanical coupling factor(kp) and dielectric constant were showed the optimum values of 2356, 0.504 and 1266, respectively. All the specimens showed tetragonality phase, and pyrochlore phase was not shown.

  • PDF

Bender-type Multilayer Piezoelectric Devices for Energy Harvesting (미소에너지 하베스팅용 적층 벤더 압전 소자 성능 연구)

  • Jeong, Soon-Jong;Kim, Min-Soo;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.193-193
    • /
    • 2008
  • Wearable and ubiquitous micro systems will be greatly growing and their related devices should be self-powered in order to avoid the replacement of finite power sources, for example, by scavenging energy from the environment. With ever reducing power requirements of both analog and digital circuits, power scavenging approaches are becoming increasingly realistic. One approach is to drive an electromechanical converter from ambient motion or vibration. Vibration-driven generators based on electromagnetic, electrostatic and piezoelectric technologies have been demonstrated. Among various generator types proposed so far, piezoelectric generator possesses considerable potential in micro system. To overcome low mechanical-to-electric energy conversion, the piezoelectric device should activate in resonance mode in response to external vibration. Normally, the external vibration excretes at low frequency ranging 0.1 to 200 Hz, whereas the resonant frequencies of the devices are fixed as constant. Therefore, keeping their resonant mode in varying external vibration can be one of important points in enhancing the conversion efficiency. We investigated the possibility of use of multi-bender type piezoelectric devices. To match the external vibration frequency with the device resonant frequency, the various devices with different resonant frequency were chosen.

  • PDF

Stress and Electric Potential Fields in Piezoelectric Smart Spheres

  • Ghorbanpour, A.;Golabi, S.;Saadatfar, M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1920-1933
    • /
    • 2006
  • Piezoelectric materials produce an electric field by deformation, and deform when subjected to an electric field. The coupling nature of piezoelectric materials has acquired wide applications in electric-mechanical and electric devices, including electric-mechanical actuators, sensors and structures. In this paper, a hollow sphere composed of a radially polarized spherically anisotropic piezoelectric material, e.g., PZT_5 or (Pb) (CoW) $TiO_3$ under internal or external uniform pressure and a constant potential difference between its inner and outer surfaces or combination of these loadings has been studied. Electrodes attached to the inner and outer surfaces of the sphere induce the potential difference. The governing equilibrium equations in radially polarized form are shown to reduce to a coupled system of second-order ordinary differential equations for the radial displacement and electric potential field. These differential equations are solved analytically for seven different sets of boundary conditions. The stress and the electric potential distributions in the sphere are discussed in detail for two piezoceramics, namely PZT _5 and (Pb) (CoW) $TiO_3$. It is shown that the hoop stresses in hollow sphere composed of these materials can be made virtually uniform across the thickness of the sphere by applying an appropriate set of boundary conditions.

The Piezoelectric and Dielectric Properties of PZT-PMN Ceramics (PZT-PMN 압전 세라믹의 압전 및 유전 특성)

  • Lee, J.S.;Lee, Y.H.;Hong, J.K.;Jeong, S.H.;Chai, H.I.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.131-134
    • /
    • 2001
  • In this paper, the piezoelectric and dielectric properties as a function of x and a in $aPbZr_xTi_{1-x}O_3-(1-a)Pb(Mn_{1/3}Nb_{2/3})O_3$ + ywt%MgO is investigated. As a results, when a is 0.95 and x is 0.505, electromechanical coupling factor$(k_p)$, permittivity${\varepsilon}_33^T/{\varepsilon}_0$, piezoelectric strain constant$(d_{33})$ and mechanical quality factor$(Q_m)$ are 58 %, 1520, 272 pC/N and 1550, respectively. From XRD analysis, when x is 0.505, it is MPB which present rhombohedral and tetragonal phase in same quantity. Also, From SEM observation, when sintering temperature is $1150^{\circ}C$, grain size is about $2\;{\mu}m$. As a results added MgO dopant in the ternary piezoelectric ceramic, when MgO content is 0.1 wt%, $k_p$ increases to 63[%].

  • PDF

Aging Effect of Bio-inspired Artificial Basilar Membrane with Piezoelectric PVDF Thin Film

  • Kim, Wan Doo;Park, Su A;Kim, Sang Won;Kwak, Jun-Hyuk;Jung, Young Do;Hur, Shin
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.292-296
    • /
    • 2015
  • Biomimetic artificial basilar membrane being a core part of artificial cochlear requires performance evaluation through aging test. To evaluate the aging properties of PVDF piezoelectric membrane used for artificial basilar membrane, its mechanical properties such as tensile strength and elastic modulus and piezoelectric property such as piezoelectric constant were measured. The aging test conditions and acceleration constants were calculated based on Arrhenius model. The changes in tensile strengths and elastic moduli measured were less than 10~20% after aging test equivalent for 10 years. The piezoelectric constants were decreased drastically to 80% of its initial value in the early stage of the aging test and expected to decrease slowly down to 65% over 10 years. The experimental results show the reliability of totally implantable novel artificial cochlear and will contribute its commercialization.

An Investigation on the Aging Properties of NKN Lead-free Piezoelectric Multi-layer Ceramic Actuators (NKN 무연압전 액추에이터의 신뢰성 연구)

  • Chae, Moon-Soon;Lee, Ku-Tak;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.803-806
    • /
    • 2011
  • 1 mol% $Li_2O$ excess $0.9(Na_{0.52}K_{0.48})NbO_3-0.1LiTaO_3$ lead-free piezoelectric multilayer ceramic actuators were investigated to determine their aging properties. To reduce the thermal aging behavior, we applied a rectified unipolar electric field of 5 kV/mm to the specimen to accelerate the electric aging behavior. By employing a rectified unipolar electric field for the piezoelectric actuators, we could remove undesirable heating from the relaxation current in the motion of the ferroelectric domain. To accelerate the aging test, the applied electric fields had a frequency of 900 Hz. To have enough time for charging and discharging, we employed an accurate time constant to design the equivalent circuit model for the aging tester. To extract exact aging behavior, we measured the pseudo-piezoelectric coefficient before and after the aging process. We also measured the electro-mechanical coupling coefficient, the frequency-dependent dielectric permittivity, and the impedance to compare with fresh and aged specimen.

Dielectric and Piezoelectric Properties of (Na,K)(Nb,Ta,Sb)O3 Ceramics doped with Nb2O5 (Nb2O5 첨가에 따른 (Na,K)(Nb,Ta,Sb)O3 세라믹스의 유전 및 압전 특성)

  • Byeon, Sun-Min;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.867-872
    • /
    • 2012
  • In this study, in order to develop excellent lead free piezoelectric ceramics for piezoelectric actuators application, $Li_{0.04}(Na_{0.50}K_{0.50})_{0.96}[(Nb_{0.86}Ta_{0.10}Sb_{0.04})_{0.994}Co_{0.015}]O_3+0.0025SrO+0.15\;wt%K_2CO_3+x\;wt%Nb_2O_5$ (x = 0 - 0.5 wt%) (abbreviated as LNKNTSCS-xN) ceramics were fabricated by a conventional sintering technique. the phase structure, microstructure and electrical properties were investigated with a emphasis on the influence of the $Nb_2O_5$ content. High electrical properties of $d_{33}$=234 pC/N, kp=0.392, ${\varepsilon}_r$=1,395, ${\rho}=4.70g/cm^3$ were obtained from the specimen with x=0.4 wt%, which suggests that the composition ceramics is a promising lead-free piezoelectric material.

Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of CuO Addition (CuO 첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성)

  • Lee, KabSoo;Kim, YouSeok;Yoo, JuHyun;Mah, Sukbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.630-634
    • /
    • 2014
  • $(Na_{0.525}K_{0.4425}Li_{0.0375})(Nb_{0.9975}Sb_{0.065}Ta_{0.0375})O_3+0.3 wt%CoO$ ceramics were fabricated as a function of CuO addition by traditional solid state sintering process in order to develop excellent lead-free piezoelectric ceramics composition. The addition of CuO in the LNKNTS composition ceramics can effectively enhance the densification of the ceramics, resulting in the oxygen vacancies as hardening effect. The excellent piezoelectric properties of electromechanical coupling factor($k{\small}_P$) of 0.378, piezoelectric constant($d_{33}$) of 152 pC/N were obtained from the 1.0 mol% CuO doped LNKNTS ceramics sintered at $1,020^{\circ}C$ for 3 h.

Dielectric and Piezoelectric Characteristics of $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ Ceramics with the amount of $Bi_2O_3$ addition ($Bi_2O_3$ 첨가량에 따른 $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Lee, Sang-Ho;Yoo, Ju-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.292-293
    • /
    • 2007
  • In the study, in order to develop low temperature sintering ceramics for multilayer piezoelectric transformer, $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ ceramics were fabricated using $Na_2CO_3$, $Li_2CO_3$, $MnO_2$ and $Bi_2O_3$ as sintering aids and their dielectric and piezoelectric properties were investigated according to the amount of $Bi_2O_3$ addition. At the sintering temperature of $900^{\circ}C$, density, thickness vibration mode electromechanical coupling factor ($k_t$), thickness vibration mode mechanical quality factor ($Q_{mt}$) and dielecteic constant (${\varepsilon}_r$) showed the optimum value of $6.94[g/cm^3]$, 0.497, 3,162 and 209, respectively, for multilayer piezoelectric transformer application.

  • PDF