DOI QR코드

DOI QR Code

An Investigation on the Aging Properties of NKN Lead-free Piezoelectric Multi-layer Ceramic Actuators

NKN 무연압전 액추에이터의 신뢰성 연구

  • Chae, Moon-Soon (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Ku-Tak (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koh, Jung-Hyuk (Department of Electronic Materials Engineering, Kwangwoon University)
  • 채문순 (광운대학교 전자재료공학과) ;
  • 이규탁 (광운대학교 전자재료공학과) ;
  • 고중혁 (광운대학교 전자재료공학과)
  • Received : 2011.09.15
  • Accepted : 2011.09.24
  • Published : 2011.10.01

Abstract

1 mol% $Li_2O$ excess $0.9(Na_{0.52}K_{0.48})NbO_3-0.1LiTaO_3$ lead-free piezoelectric multilayer ceramic actuators were investigated to determine their aging properties. To reduce the thermal aging behavior, we applied a rectified unipolar electric field of 5 kV/mm to the specimen to accelerate the electric aging behavior. By employing a rectified unipolar electric field for the piezoelectric actuators, we could remove undesirable heating from the relaxation current in the motion of the ferroelectric domain. To accelerate the aging test, the applied electric fields had a frequency of 900 Hz. To have enough time for charging and discharging, we employed an accurate time constant to design the equivalent circuit model for the aging tester. To extract exact aging behavior, we measured the pseudo-piezoelectric coefficient before and after the aging process. We also measured the electro-mechanical coupling coefficient, the frequency-dependent dielectric permittivity, and the impedance to compare with fresh and aged specimen.

Keywords

References

  1. J. S. Song and S. J. Jeong, Mater. Sci. Forum, 48, 2225 (2003).
  2. D. Viehland and J. F. Li, J. Appl. Phys., 89, 1826 (2001) https://doi.org/10.1063/1.1335651
  3. K. Shiratsuyu, K. Hayashi, A. Ando, and Y. Sakabe, Jpn. J. Appl. Phys., 39, 5609 (2000). https://doi.org/10.1143/JJAP.39.5609
  4. A. Halliyal and A. Safari, Ferroelectrics, 158, 295 (1994). https://doi.org/10.1080/00150199408216032
  5. Y. Guo, H. Luo, K. Chen, H. Xu, X. Zhang, and Z. Yin, J. Appl. Phys., 92, 6134 (2002). https://doi.org/10.1063/1.1516256
  6. H. Yamaguchi, J. Am. Ceram. Soc., 82, 1459 (1999).
  7. Y. Saito, H. Takkao, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  8. R. E. Jeager and L. Egerton, J. Am. Ceram. Soc., 45, 209 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11127.x
  9. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Itoh, Jpn. J. Appl. Phys., 41, 7119 (2002). https://doi.org/10.1143/JJAP.41.7119
  10. M. Onoe and H. Jumonji, J. Acoust. Soc. Am., 41, 974 (1967). https://doi.org/10.1121/1.1910452
  11. J. H. Koh, S. J. Jeong, M. S. Ha, and J. S. Song, Sensor. Actuat., A112, 232 (2004).
  12. Q. M. Zhang, J. Zhao, and L. E. Cross, J. Appl. Phys., 79, 3181 (1996). https://doi.org/10.1063/1.361261