• Title/Summary/Keyword: Piezoelectric Composite Plate

Search Result 81, Processing Time 0.023 seconds

Spline finite strip method incorporating different plate theories for thick piezoelectric composite plates

  • Akhras, G.;Li, W.C.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.531-546
    • /
    • 2009
  • In the present analysis, the spline finite strip with higher-order shear deformation is formulated for the static analysis of piezoelectric composite plates. The proposed method incorporates Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model, Cho's higher-order zigzag laminate theory, as well as the classic plate theory and the first-order plate theory. Thus, the analysis can be conducted based on any of the above-mentioned theories. The selection of a specific method is done by simply changing a few terms in a 2 by 2 square matrix and the results, obtained according to different plate theories, can be compared to each other. Numerical examples are presented for piezoelectric composite plates subjected to mechanical loading. The results based on different shear deformation theories are compared with the three-dimensional solutions. The behaviours of piezoelectric composite plates with different length-to-thickness ratios, fibre orientations, and boundary conditions are also investigated in these examples.

Analysis of a Plate-type Piezoelectric Composite Unimorph Actuator Considering Thermal Residual Deformation (잔류 열 변형을 고려한 평판형 압전 복합재료 유니모프 작동기의 해석)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.409-419
    • /
    • 2006
  • The actuating performance of plate-type unimorph piezoelectric composite actuators having various stacking sequences was evaluated by three dimensional finite element analysis on the basis of thermal analogy model. Thermal residual stress distribution at each layer in an asymmetrically laminated plate with PZT ceramic layer and thermally induced dome height were predicted using classical laminated plate theory. Thermal analogy model was applied to a bimorph cantilever beam and LIPCA-C2 actuator in order to confirm its validity. Finite element analysis considering thermal residual deformation showed that the bending behavior of piezoelectric composite actuator subjected to electric loads was significantly different according to the stacking sequence, thickness of constituent PZT ceramic and boundary conditions. In particular, the increase of thickness of PZT ceramic led to the increase of the bending stiffness of piezoelectric composite actuator but it did not always lead to the decrease of actuation distance according to the stacking sequences of piezoelectric composite actuator. Therefore, it is noted that the actuating performance of unimorph piezoelectric composite actuator is rather affected by bending stiffness than actuation distance.

Suppression of Sound Radiation from Composite Plate Structures Using Piezoelectric Materials (압전재료를 이용한 복합재료 평판 구조물의 음향파워 억제)

  • 윤기원;김승조
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.781-790
    • /
    • 1996
  • The goal of current research is to suppress the acoustic noise radiated from vibration of composite plate structure. The induced noise can be reduced through the control of the corresponding structural vibration modes by using the piezoelectric materials as actuator. The acoustic fields are to be analyzed through the boundary element method (BEM) based on the Rayleigh intergral equation and structural system through the finite element method (FEM). The suppression of rediated sound is studied by adaping the piezoelectric material as the distributed actuator. Numerical results are presented on the sound radiation from composite plate of arbitrary boundary conditions, the noise reduction adapting the piezoelectric materials as distributed actuator. The results show the effectiveness and possibility of piezoelectric actuator in the control of sound radiation from composite structure.

  • PDF

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

Electro-elastic analysis of piezoelectric laminated plates

  • Zhao, Minghao;Qian, Caifu;Lee, S.W.R.;Tong, Pin;Suemasu, H.;Zhang, Tong-Yi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2007
  • Based on the Kirchhoff hypothesis of normal-remain-normal, the present work analyses piezoelectric laminated plates, wherein poled piezoelectric laminae are transversely isotropic and function as actuators. A quadric electric field is induced inside a piezoelectric lamina under a given applied voltage and mechanical bending. The governing equations for the piezoelectric laminated plate derived from the principle of virtual work in terms of the electric enthalpy have the same forms as those for a conventional composite laminated plate. We use rectangular sandwich plates of Al/PZT/Al and PZT/Al/PZT with four simply supported edges to demonstrate the prediction of the maximum bending stress in the PZT layer. The analytic solutions are verified by three-dimensional finite element analysis.

Actuating Characteristics of a Piezoceramic fiber Composite Actuator (압전섬유 복합재 엑츄에이터의 거동 특성)

  • Koo, Kun-Hyung;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.53-56
    • /
    • 2001
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material and actuator shape. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

  • PDF

Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles

  • Taherifar, Reza;Mahmoudi, Maryam;Nasr Esfahani, Mohammad Hossein;Khuzani, Neda Ashrafi;Esfahani, Shabnam Nasr;Chinaei, Farhad
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this paper, buckling analyses of composite concrete plate reinforced by piezoelectric nanoparticles is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite concrete plate. The nano composite concrete plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of concrete plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of piezoelectric nanoparticles volume percent, geometrical parameters of concrete plate and elastic foundation on the buckling load are investigated. Results showed that with increasing Piezoelectric nanoparticles volume percent, the buckling load increases.

Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT

  • Mohammadimehr, Mehdi;Rostami, Rasoul;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.513-543
    • /
    • 2016
  • Third order shear deformation theory is used to evaluate electro-elastic solution of a sandwich plate with considering functionally graded (FG) core and composite face sheets made of piezoelectric layers. The plate is resting on the Pasternak foundation and subjected to normal pressure. Short circuited condition is applied on the top and bottom of piezoelectric layers. The governing differential equations of the system can be derived using Hamilton's principle and Maxwell's equation. The Navier's type solution for a sandwich rectangular thick plate with all edges simply supported is used. The numerical results are presented in terms of varying the parameters of the problem such as two elastic foundation parameters, thickness ratio ($h_p/2h$), and power law index on the dimensionless deflection, critical buckling load, electric potential function, and the natural frequency of sandwich rectangular thick plate. The results show that the dimensionless natural frequency and critical buckling load diminish with an increase in the power law index, and vice versa for dimensionless deflection and electrical potential function, because of the sandwich thick plate with considering FG core becomes more flexible; while these results are reverse for thickness ratio.

A Study on the Vibration of an Annular Piezoelectric Motor Stator (압전 모터 스테이터의 진동 해석)

  • 최종운;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.15-21
    • /
    • 1999
  • This study investigates the free and forced vibration characteristics of an annular piezoelectric motor stator constructed of two piezoelectric material layers and one stainless steel layer. The annular piezoelectric motor stator is subjected to a travelling load produced by piezo drive electrical voltage input to the two piezoelectric layers. The stator is modeled as an annular laminated plate based on the classical plate theory and the governing equations are derived via Hamilton's variational principle. Variation of the free vibration characteristics as a function of several design parameters has been studied and based on this result, the forced vibration responses to the input electricity of various frequencies and magnitudes are investigated. The obtained results will provide an important criterion, a priori, in the design of piezoelectric motors.

  • PDF

Influence of Applied Electric Fields and Drive Frequencies on The Actuating Displacement of a Plate-type Piezoelectric Composite Actuator (평판형 압전 복합재료 작동기의 작동 변위에 미치는 인가전압 및 구동주파수의 영향)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.576-584
    • /
    • 2006
  • The actuating performance test of plate-type piezoelectric composite actuators having different lay-up sequences was experimentally carried out at simply supported and fixed-free boundary conditions. The actuating displacement of manufactured plate-type piezoelectric composite actuator (PCA) was measured using a non-contact laser displacement measurement system. Our results revealed that the actuating displacement with increasing applied electric field at a drive frequency of 1Hz increased non-linearly at the simply supported boundary condition whereas it almost linearly increased at the fixed-free boundary condition. On the other hand, the actuating displacement of piezoelectric composite actuator depended on the applied electric field in a drive frequency range from 1Hz to 10Hz, but its behavior was different in higher drive frequencies beyond 15Hz due to the occurrence of resonance. On the basis of the above experimental results, the bending characteristics of PCAs revealed different behavior depending on applied electric fields, drive frequencies as well as boundary conditions. Therefore, by investigating drive frequencies together with applied electric fields, actuating performance can be easily controlled and PCAs which were fabricated for this study will be sufficiently applied to pumping devices.