• Title/Summary/Keyword: Piezo-stack Actuator

Search Result 19, Processing Time 0.025 seconds

Study on Self-moving Cell Linear Motor Using Piezo-stack actuators (적층 압전 작동기를 이용한 Self-moving Cell 선형모터 연구)

  • 이진호;김재환;최관영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.371-375
    • /
    • 2001
  • The concept of a new linear motor that uses piezo-stack actuator is demonstrated. The working principle is far different from the conventional inchworm motor. This motor is based on the self-moving cell concept. The linear motor has three cells and each cell is constructed with one piezo-stack actuator and a shell structure. A cell train is constructed by connecting these cells and the cell train is fitted into a guide way with a proper interference. The cell train moves along the guide way, by activating each cell in succession. The moving motion of the motor is tested. Since this linear motor uses piezo-stack actuator with unified clamping cell, it can produce fast speed, high resolution and large push force.

  • PDF

Research for ultra precision linear motor by using piezo stack actuators (적층형 압전재료를 이용한 초정밀 선형 모터에 관한 연구)

  • 임장환;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.649-654
    • /
    • 2003
  • This paper is focused on the research of the ultra precision linear motor by using piezo stack actuators. The development of linear motor which can be controlled nano or micro scale is necessary for the precision manufacturing. Self-moving-cell principle is used for the design of linear motor Self-moving-cell linear motor is consisted of three cell structures, and each cell has two shells and one piezo-stack actuator. Each cell can do clamping and moving by two shell structures. The shell structure deformation by piezo stack actuator can move the linear motor by losing the clamping between the shall and guideway. This paper presents the design, manufacturing and test of the motor.

  • PDF

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Improvement for Response Delays of Displacement Magnifier in Jetting Dispenser (젯팅 디스펜서 변위확대장치의 응답지연 개선 연구)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;Hong, Seung-Min;Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.546-551
    • /
    • 2016
  • The objective of this study is to investigate the response delays between piezo-stack actuator and the displacement magnifier of jetting dispenser and to reduce its falling time in terms of displacement optimization. The dispenser is driven by the dual piezo-stack actuators with a hinge lever mechanism to precisely control flow rate of the working fluid (3000 cP). It is commonly found that piezo actuator-driven jetting dispensers involving viscous working fluids have displacement optimization problem for ideal performance. The response delay of the system is caused by the phenomenon that the displacement magnifier cannot exactly follow the motion of the piezo actuators. The response delay may lower the performance of the system due to the inaccurate discharge of working fluid or even damages to the system itself due to inharmonious motion of piezo actuators with lever system. To reduce its response delay, a new displacement profile obtained from displacement optimization is suggested; its performance is tested through finite element analysis; and experiments are carried out to verify the performance of the obtained displacement profile.

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.

Development of Rotational Nanoactuator Based on Four-Bar Linkage (4절링크 기구기반의 회전형 초정밀위치결정기구의 개발)

  • Jeong, Young Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.361-367
    • /
    • 2014
  • Ultra-precision positioning plays a crucial role in emerging technologies such as electronics, bioengineering, optics, and various nanofabrication technologies. As a result, various nanopositioning methods have been presented. In particular, nanopositioning using a flexure mechanism and piezo-electric actuator is one of the most valuable methods because of its friction-free motion and subnanometer-scale motion resolution. In this study, a rotational nanoactuator based on a right-circular flexure mechanism and piezo-electric actuator was developed through a consideration of the kinematics and structural deformation. An experimental setup was constructed to verify the performance expectation. Consequently, it was demonstrated that the developed system had a maximum rotational angle of about 0.01 rad, as well as sufficient linearity with respect to the input voltage.

A Study on Frequency Characteristics of a Bender Type High-Speed Piezoelectric Pneumatic Valve (벤더형 고응답 압전밸브의 주파수 특성에 관한 연구)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.;Lee, S.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.14-18
    • /
    • 2012
  • Two kinds of piezoelectric actuator are applied to the valve for controlling the direction, the flow and the pressure of the fluid. One is a stack type piezoelectric actuator which has very fast response characteristics but very tiny displacement. The other is a bender type piezoelectric actuator which has also fast response characteristics but lower than the stack type one, and has longer displacement than the stack type one. So, the bender type piezoelectric actuator has advantage to apply to the valve for controlling a large amount of flow and fast on-off operating. In this study, the bender type piezoelectric pneumatic valve for color sorter is designed and fabricated. The new type high speed piezo valve with the both side supporting mechanism for high operating frequency and high reliability is discussed for separating the foreign body from the grains. Finally, the performance characteristics of a fabricated valve are analyzed and the frequency characteristics are also discussed for substituting the conventional type solenoid actuator.

Analysis of the Driving Performance in Piezo Injector for Clean Diesel Engine (친환경 디젤엔진용 차세대 피에조 인젝터의 구동성능 해석)

  • Lee, Jin-Wook;Kang, Kern-Yong;Min, Kyoung-Doug
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.33-34
    • /
    • 2006
  • In this study, a prototype piezo-driven Injector. as a new method driven by piezoelectric energy, has been designed and fabricated based on the concept of inverse piezo-electric effect to overcome the major drawbacks of conventional solenoid-driven injector with a fixed and slow control of injection rate. The effects of an electric control between the solenoid valve and piezo-ceramic stack for injector needle's driving on the dynamic characteristics were usually investigated. We found that this piezo-electric actuator has the main advantage to drastically reducing the time of injector nozzle opening, as well to exert higher force output levels.

  • PDF