• 제목/요약/키워드: Phytoremediation

검색결과 202건 처리시간 0.021초

A Comparison of Electrical Stimulation for Electrodic and EDTA-Enhanced Phytoremediation of Lead using Indian Mustard (Brassica juncea)

  • Lim, Jae-Min;Jin, Biao;Butcher, David J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2737-2740
    • /
    • 2012
  • The use of plants to remove toxic metals from soil (phytoremediation) is emerging as a cost-effective alternative to conventional methods for the removal of heavy metals from contaminated soil. Indian mustard (Brassica juncea) was used as the plant to accumulate high tissue concentrations of lead when grown in contaminated soil. For this study, the application of an electric field combined effectively with EDTA-enhanced phytoremediation. A stimulation of direct and alternating electric potential was compared and EDTA-enhanced phytoremediation of lead using Indian mustard has been performed. The effects of experimental parameters such as operating voltage with different concentration of EDTA, the number of graphite electrodes, and cultivation period on the removal of toxic metal were studied. Shoot lead accumulations in Indian mustard increased as the concentration of EDTA and dc electric potential was increased. Two to four folds was increased when EDTA plus a dc electric potential was applied, compared to an ac electric potential. The maximum lead accumulation in the shoots was achieved by applying EDTA plus dc electric potential with 6 graphite electrodes.

Scented Geraniums: a Model System for Phytoremediation

  • Raj, Sankaran-Krishna;Dixon, Michael-A;Praveen K. Saxena
    • 식물조직배양학회지
    • /
    • 제27권4호
    • /
    • pp.325-337
    • /
    • 2000
  • All living organisms depend on soil and water for their sustained growth and development. In recent years, sustenance of life in these growth matrices has been adversely affected by the cumulative increase in environmental pollutants resulting from increasing population, growing economies and resource-use. This review provides a glimpse into the problem of global environmental pollution, the traditional technologies available for remediation and the scope of emerging‘plant-based remediation’technologies. Phytoremediation, the use of plants to effectively remove or stabilize contaminants from the growth substrate, is a low cost and ecologically friendly alternative to the common‘dig and dump’technologies. The field of phytoremediation has been driven by the intrinsic need for identification of ideal candidate plant species. To date, there are only a very few identified plants which satisfy all of the prerequisites for use in phytoremediation. The review focuses on one such plant species, the common horticultural plant scented geranium (Pelargonium sp.), with demonstrated potential to remediate metal / salt contaminated soils / aqueous systems. The characterization of tolerance and metal / salt accumulation potential of Pelargonium sp. and its efficacy in remediating complex contaminated sites are described. The unique ability of scented geraniums to tolerate excessive amounts of multi-metals, hydrocarbon and salt mixtures, and at the same time to accumulate significant amounts of metal and salt ions in the biomass, renders this plant species as one of the ideal candidates for remediation.

  • PDF

Phytoremediation potential of indigenous Ghanaian grass and grass-like species grown on used motor oil contaminated soils

  • Akutam, Abednego;Pappoe, Alexander Nii Moi;Armah, Frederick Ato;Enu-Kwesi, Lewis
    • Journal of Ecology and Environment
    • /
    • 제37권2호
    • /
    • pp.41-51
    • /
    • 2014
  • This study investigated the ability of Bothriochloa bladhii (Retz.) S.T. Blake (Poaceae), Cyperus ligularis L. (Cyperaceae), Commelina erecta L. (Commelinaceae), Mariscus umbellatus (Rottb.) Vahl (Cyperaceae), Fimbistylis miliacea L. (Cyperaceae) and Torulinium odoratum L. (Cyperaceae) to clean up various levels of used motor oil (UMO) contaminated soils. The plants were grown in 2 kg garden soils treated to 0%, 1%, 5% and 10% levels of UMO contamination. The plant growth parameters, chlorophyll contents and dry weight of test plants were measured. The phytoremediation ability of these test plants were assessed by measuring the uptake of hydrocarbons in terms of total hydrocarbon content (THC) as well as their percentage degradation values. There was significant (P < 0.05) reduction in leaf chlorophyll contents and dry weights of the test plant species planted in UMO contaminated soils. THC as well as the percentage uptake (or degradation) of hydrocarbons were both lowest in C. ligularis but highest in T. odoratum in all cases. The phytoremediation potential of test plants was highest in soils contaminated with 5% UMO. Based on the results of this study, all test plants with the exception of C. ligularis were potentially capable of undertaking phytoremediation. However, B. bladhii and T. odoratum proved most effective in the uptake and degradation of UMO.

고농도 유류와 중금속으로 복합 오염된 토양에서 식물성장에 미치는 부식산의 영향 (Effects of Humic Acids on Growth of Herbaceous Plants in Soil Contaminated with High Concentration of Petroleum Hydrocarbons and Heavy Metals)

  • 김기섭;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권1호
    • /
    • pp.51-61
    • /
    • 2011
  • Germination tests were conducted to determine the practical concentration levels at which plants can reproduce naturally during the phytoremediation of soils contaminated with a high concentration of petroleum hydrocarbons and heavy metals. The effects of humic acids on plant growth and soil physicochemical properties were also investigated. The results show that phytoremediation can be applied in soils contaminated by multiple contaminants at the former soil contamination potential level of Korean soil quality standards considering successful natural reproduction. It was observed that germination rates of Helianthus annuus and Festuca arundinacea were high after all treatments, and transplantation was more appropriate for Phragmites communis in phytoremediation. Humic acids had a positive effect on the growth of both aboveground and belowground biomass of herbaceous plants. Growth inhibition by multiple contaminants is more severe in the case of aboveground biomass. Germination and growth tests suggest that Helianthus annuus is a suitable phytoremediation plant for soils contaminated with a high concentration of petroleum hydrocarbons and heavy metals. The addition of humic acids also caused changes in the physicochemical properties of contaminated soils. An increase in the carbon and nitrogen content due to the addition of humic acids and a correlation between cation exchange capacity(CEC) and the organic matter content were observed.

Phytoremediation of Disel-Contaminated Soil by Poplar Tree

  • 조수형;장순웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.252-254
    • /
    • 2004
  • In the past several years phytoremediation, defined as the use of plants for removing contaminants from media such as soils or water, has attracted a great deal of interest as a potentially useful remediation technology. In this study, we have attempted to asses the effectiveness of phytoremeidation of disel contaminate soils using hybrid poplar species. 3 poplar species had removed disel from soil effectively and toxic effect was also observed over 2500mg/kg disel contaminated soil, which indicating reducing disel removal.

  • PDF

Phytoremediation of Selected Explosives in a Model System of Plant Tissue Cultures

  • Vanek, Tomas;Nepovim, Ales;Zeman, Svatopluk
    • 식물조직배양학회지
    • /
    • 제27권5호
    • /
    • pp.395-399
    • /
    • 2000
  • The phytoremediation of trinitrotoluene, nitroglycerine, pentaerytritoltetranitrate in plant tissue cultures of Solanum aviculare, Rheum palmatum and Populus simonii were studied. All above mentioned explosives were degradated to to less toxic products and finally mineralized or bound to the cell wall.

  • PDF

중금속 오염 토양 정화를 위한 식물생장촉진세균: 특성, 활용 및 전망 (Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects)

  • 조경숙
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.399-422
    • /
    • 2020
  • 도시화 및 산업화로 인해 발생된 중금속으로 오염된 토양의 정화는 인간의 건강 뿐 아니라 지구생태계의 지속성을 위해 매우 중요하다. 중금속 오염 토양 정화 기술 중 식물상복원법은 타 방법에 비해 처리 단가가 저렴하고, 토양 비옥도 및 생물 다양성이 영향을 덜 받는 환경친화적인 방법이다. 이러한 식물상복원법에 식물생장촉진세균(plant growth promoting bacteria, PGPB)을 도입하여 중금속 독성 하에서 식물 생장을 촉진하고 중금속 정화 효율을 향상시킬 수 있다. 본 논문에서는 주요 토양오염물인 중금속의 발생원, 미생물·식물·인간에 미치는 중금속 영향 및 PGPB의 식물생장촉진 기작을 정리하였다. 중금속 오염 토양 정화를 위하여 식물상복원에 PGPB의 활용에 관한 최근 10년 동안의 연구 동향을 분석하였다. 또한, PGPB의 실제 적용 시 중금속 제거 효율에 미치는 다양한 환경 인자와 PGPB의 접종 방법의 영향을 고찰하였다. PGPB 활용 식물상복원 기술의 혁신을 위해서는 실제 현장에서 PGPB의 거동과 식물-PGPB-자생미생물 사이의 상호작용에 대한 이해가 필요하다.

오염 토양의 식물상 복원효율에 미치는 식물, 근권세균 및 물리.화학적 인자의 영향 (Effects of Plants, Rhizobacteria and Physicochemical Factors on the Phytoremediation of Contaminated Soil)

  • 홍선화;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제35권4호
    • /
    • pp.261-271
    • /
    • 2007
  • 토양오염을 복원하는 방법 중 식물상 복원은 식물을 이용하여 오염물을 제거하는 기술로, 환경 친화적이며, 경제적인 기술이기 때문에 많이 이용되고 있다. 이 연구에서는 식물상 복원에 있어 식물의 영향, 근권 세균과 물리화학적 제한인자에 대해 고찰하였다. 성공적인 식물상 복원을 위해서는 식물의 선택이 가장 중요하다. 유류(디젤) 분해를 위해 적용된 식물은 쥐보리(Lolium multiflorum lam), 베치(Vicia villosa), 버섯류(white mustard), 톨페스큐(Festuca arundinacea), 콩과식물(leguminosae), 포플러, 소나무(Pinus densiflora) 등이고, 유류 제거 효율은 68-99% 이었다. PAH(polycyclic aromatic hydrocarbons) 제거용으로는 옥수수(Zeo mays), 쥐보리, 베치, 버섯류, 토끼풀(Trifolium repens), 그리고 톨페스큐이 이용되었고, 50-98%의 제거 효율을 보였다. 식물의 성장을 향상시킬 뿐 만 아니라, 오염물질을 직접적으로 제거할 수 있는 근권 세균도 식물상 복원에 있어 중요한 역할을 한다. 식물상 복원에 이용된 근권 세균에는 Azospirillum lipoferum, Enterobactor cloacae, Azospirillum brasilense, Pseudomonas putida, Burkholderia xenovorans, Comamonas testosterone, Pseudomonas gladioli, Azotobacter chroococcu, Bacillus megaterium, Bacillus subtilis 등이 있다. pH, 온도, 영양물질, 최종전자수용체, 수분함량, 유기물 함량, 오염물질 종류와 물리화학적 인자도 식물상 복원에 있어 제한 요소로 작용한다.