Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2737

A Comparison of Electrical Stimulation for Electrodic and EDTA-Enhanced Phytoremediation of Lead using Indian Mustard (Brassica juncea)  

Lim, Jae-Min (Department of Chemistry, Changwon National University)
Jin, Biao (Instrumental Analysis Center, Yanbian University)
Butcher, David J. (Department of Chemistry and Physics, Western Carolina University)
Publication Information
Abstract
The use of plants to remove toxic metals from soil (phytoremediation) is emerging as a cost-effective alternative to conventional methods for the removal of heavy metals from contaminated soil. Indian mustard (Brassica juncea) was used as the plant to accumulate high tissue concentrations of lead when grown in contaminated soil. For this study, the application of an electric field combined effectively with EDTA-enhanced phytoremediation. A stimulation of direct and alternating electric potential was compared and EDTA-enhanced phytoremediation of lead using Indian mustard has been performed. The effects of experimental parameters such as operating voltage with different concentration of EDTA, the number of graphite electrodes, and cultivation period on the removal of toxic metal were studied. Shoot lead accumulations in Indian mustard increased as the concentration of EDTA and dc electric potential was increased. Two to four folds was increased when EDTA plus a dc electric potential was applied, compared to an ac electric potential. The maximum lead accumulation in the shoots was achieved by applying EDTA plus dc electric potential with 6 graphite electrodes.
Keywords
Phytoremediation; Lead; Indian mustard; Electrodics; EDTA;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Blaylock, M. J.; Salt, D. E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y. Environ. Sci. Technol. 1997, 31, 860.   DOI   ScienceOn
2 Salido, A. L.; Hasty, K. L.; Lim, J.-M.; Butcher, D. J. Int. J. Phytoremediat. 2003, 5, 89.
3 Acar, Y. B.; Alshawabkeh, A. N. Environ. Sci. Technol. 1993, 27, 2638.   DOI   ScienceOn
4 Alshawabkeh, A. N.; Yeung, A. T.; Bricka, M. R. J. Environ. Engineering 1999, 125, 27.   DOI   ScienceOn
5 Alshawabkeh, A. N.; Gale, R. J.; Ozsu-Acar, E.; Bricka, R. M. J. Soil Contamination 1999, 8(6), 617.   DOI
6 Lim, J.-M.; Salido, A. L.; Butcher, D. J. Microchem. J. 2004, 76, 3.   DOI   ScienceOn
7 Embrick, L. L.; Porter, K. M.; Pendergrass, A.; Butcher, D. J. Microchem. J. 2005, 81, 117.   DOI
8 Raskin, I.; Ensley, B. D. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment; John Wiley: New York, 2000.
9 Terry, N.; Banuelos, G. S. Phytoremediation of Contaminated Soil and Water; Lewis Publishers: Baca Raton, 2000.
10 Ebbs, S. D.; Kochian, L. V. Environ. Sci. Technol. 1998, 32, 802.   DOI
11 Sarret, G.; Vangronsveld, J.; Manceau, A.; Musso, M.; D'Haen, J.; Menthonnex, J.-J.; Hazenmann, J.-L. Environ. Sci. Technol. 2001, 35, 2854.   DOI   ScienceOn
12 Whiting, S. N.; Leake, J. R.; Mcgrath, S. P.; Baker, A. J. M. Environ. Sci. Technol. 2001, 35, 3237.   DOI
13 McBride, M. B. Environmental Chemistry of Soils; Oxford University Press: New York, 1994.
14 Ebbs, S. D.; Lasat, M. M.; Brady, D. J.; Cornish, J.; Gordon, R.; Kochian, L. V. J. Environ. Qual. 1997, 26(5), 1424.
15 Huang, J. W.; Blaylock, M. J.; Kapulnik, Y.; Ensley, B. D. Environ. Sci. Technol. 1998, 32, 2004.   DOI
16 Kumar, P. B. A. N.; Dushenkov, V.; Motto, H.; Raskin, I. Environ. Sci. Technol. 1995, 29, 1232.   DOI