• Title/Summary/Keyword: Phytophthora rot

Search Result 130, Processing Time 0.027 seconds

Occurrence of the Phytophthora Blight Caused by Phytophthora sansomeana in Atractylodes macrocephala Koidz. (Phytophthora sansomeana에 의한 큰꽃삽주 역병 발생 보고)

  • An, Tae Jin;Park, Myung Soo;Jeong, Jin Tae;Kim, Young Guk;Kim, Yong Il;Lee, Eun Song;Chang, Jae Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.404-411
    • /
    • 2019
  • Background: In September 2017, wilting and rhizome rot symptoms were observed on Atractylodes macrocephala Koidz. in Jecheon-si and Eumseong-gun. This study was carried out to isolate hitherto unidentified pathogenic fungi from A. macrocephala and to test the pathogenicity of isolated fungi against Atractylodes spp. genus such as A. macrocephala, A. japonica, and their interspecific hybrids. Methods and Results: The diseased plants were washed with running tap water, and the boundary between the healthy area and the diseased area was cut while the pathogens were isolated by growing cultures from the diseased areas on Phytophthora semi-selective medium. The internal transcribed spacer (ITS) region of the isolates was used in this study for identification. Test plants were cultivated in the glasshouse at 20℃ - 30℃ for 4 months and then used for pathogenicity test. The pots with plants inoculated with mycelial plugs and zoospores were placed at 25℃ for 48 h in a dew chamber where relative humidity was above 95%, and then moved into the glasshouse at 20℃ - 30℃. The presence or absence of pathogenicity of the strains was determined by evaluating the symptom of plant wilting. The inoculation test was performed in three replicates with a non-treated control. Conclusions: On the basis of results of ITS sequence analysis, the strains isolated from the diseased plants was identified as Phytophthora sansomeana. Biological assay using test plants confirmed the pathogenicity of P. sansomeana against Atractylodes macrocephala. This is the first report of rhizome rot in A. macrocephala caused by P. sansomeana.

Dieback Reality of Apple Trees Resulting from Soil-Borne Fungal Pathogens in South Korea from 2016 to 2019

  • Lee, Sung-Hee;Shin, Hyunman;Chang, Who-Bong;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Recently, the severe dieback of apple trees resulting from soil-borne diseases has occurred in South Korea. The casual agents of dieback were surveyed on 74 apple orchards that had been damaged nationwide in 2016-2019. The number of apple orchards affected alone by Phytophthora rot, violet root rot, and white root rot was 31, 34, and 3, respectively. Also, the total number of mixed infection orchards was 6. Out of 9,112 apple trees affected by dieback, the trees damaged by Phytophthora rot, violet root rot, and white root rot were 3,332, 3,831, and 44, respectively. Moreover, the total number of mixed infection apple trees was 1,905. The provinces mainly affected were Gyeongnam, Gyeongbuk, Chungbuk, and Jeonbuk. The survey on these infected apple orchards will be available to form management strategy for the dieback that had been increased by soil-borne fungal pathogens.

Phytophthora-Induced Diseases on Citrus in Jeju Island

  • Hyun, Jae-Wook;Lee, Seong-Chan;Kim, Kwang-Sik;Jee, Hyeong-Jin
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.184-188
    • /
    • 2001
  • Phytophthora-induced diseases on citrus in Jeju island have been considered of minor importance because of the use as root stock of trifoliate orange, which is immune to Phytophthora. However, brown rot on fruit, which severely occurred in 1998 and 1999, has become a great threat to citrus production in the island. About one-half of the surveyed orchards were infected in 1998 and 4 out of 19 infected fields showed over 20% fruit infection rate. The disease was less severe in 1999, with an estimated infected area and total fruit reduction of 3,155 ha and 15,300 tons, respectively. Typical gummosis was also occasionally observed on cv. Shiranugi, which is mostly cultivated under plastic film houses. Two types of Phytophthora were consistently isolated from various plant parts, identified as P. citrophthora and P. nicotianae. The former was isolated from the aerial parts of the fruit, young leaf, and shoot in the fields. Meanwhile, the latter was only isolated from the basal stem showing gummosis in plastic film houses.

  • PDF

Occurrence of Jujube (Zizyhus jujube) Fruit Rot caused by Phytophthora nicotianae and P. palmivora (Phytophthora nicotianae와 P. palmivora에 의한 대추역병 발생)

  • 임양숙;정기채;김승한;윤재탁
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.41-44
    • /
    • 2002
  • Two species of Phytophthora were isolated from infected fruits of jujube. Among 18 isolates collected, 6 were identified as P. nicotianae and 12 as P. patmivora on the basis of their mycological characteristics. The former produced no caduceus, ovoid to spherical sporangia in contrast to caduceus, ellipsoid, and broadly avoid to spherical ones of the latter. These two species were shown to be heterothallic and markedly papilate, chlamydospores abundant, and Al mating type. They skewed strong pathogenicity to fruits of jujube and pear while no symptom was produced on apple fruit by artificial inoculation. This is the first report of juiube fruit rot caused by P. ninotianae and P. palmivora in Korea.

Stem Rot of Kalanchoe Caused by Phytophthora nicotianae (Phytophthora micotianae 에 의한 칼랑코에 역병)

  • 한경숙;이중섭;지형진
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.8-10
    • /
    • 2001
  • A stem and root rot disease of kalanchoe (Kalanchoe sp.) which is a succulent plant that provides consumers with a durable flowering pot was found in Koyang, Kyounggi province, Korea in May 1998. We found that stems and roots of potted kalanchoe had dark brown spots at the soil level. The causal organism was identified as Pjytophtora nicotianae on the basis of mycological characteristics. The fungus produced markedly papillate, ovoid to spherical sporangia, and abundant chlamydospores. Sporangia were 20∼48$\times$24∼64㎛(avg. 35.0$\times$47.3㎛) in size, and optimum temperature for the mycelial growth of the isolate was 30$\^{C}$. The fungus showed relatively different pathogenicity to 14 kalanchoe cultivars including K. blossfelana cv. Florus. cultivars florsu, calypso, Maya, and Redsing were susceptible to thedisease in root dip inoculation. This is the first report demonstrating the stem rot on kalanchoe caused by P. nicotianae in Korea.

  • PDF

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.

First Report of Pink Rot of Potato (Solanum tuberosum) Caused by Phytophthora erythroseptica in Korea (Phytophthora erythroseptica에 의한 감자 홍색부패병 발생)

  • Ryu, Kyoung-Yul;Kim, Jeom-Soon;Kim, Jong-Tae;Hahm, Young-Il
    • Research in Plant Disease
    • /
    • v.9 no.1
    • /
    • pp.32-35
    • /
    • 2003
  • Pink rot of potato (Solanum tuberosum L.) occurred at Pyeongchang in Gangwon and at Bosung in Junnam province since 1999. The disease incidence in the surveyed areas was about 5% of harvested potatoes in 2002. Affected tubers showed a dull brown appearance and the lenticels and eyes on tubers turned dark brown. The cut surface of the diseased tuber colored faint pink and the entire surface of the diseased tuber becomes deep salmon pink within 30 min. The pathogen isolated from the diseased tubers was identified as Phytophthora erythroseptica based on morphological and cultural characteristics. Mycelial mat was fairly fluffy, rosette or stellate patterns and rounded or angular hyphal swellings were farmed in water, Temperature for mycelial growth was ranged from 5 to 3$0^{\circ}C$ and optimal temperature was $25^{\circ}C$. Non-papillate sporangia were persistent on stalk and ellipsoid, ovoid, obpyriform or distorted in shape, often with a constriction distal in the middle. Size of sporangia was 41.3~69.6$\times$26.8~47.4 (av, 55.5$\times$37.1) ${\mu}{\textrm}{m}$. Sexuality of Phytophthora erythroseptica was homothallic. Oogonia were 30~46 ${\mu}{\textrm}{m}$ in diameter and oospores were 28~35 ${\mu}{\textrm}{m}$ in diameter, Elongated or cyclindrical antheridia were all amphigynous. This is the first report on potato pink rot caused by Phytophthora erythroseptica in Korea.

An Investigation on the Brown Rot of Eggplant Caused by Phytophthora capsici Leonian (Phytophthora capsici Leonian균에 의한 가지의 갈색썩음병에 관한 조사)

  • Kim Byung Soo;Lee Eung Kwon;Chung Bong Koo
    • Korean journal of applied entomology
    • /
    • v.14 no.2 s.23
    • /
    • pp.77-79
    • /
    • 1975
  • Brown rot of eggplant caused by Phytophthora capsici has not been reported so far in Korea. The wide distribution of the disease was found at the central Korea including Suweon. The symptom of the disease was characterized by water sealing lesions at first, the color gradually turn brown and a little sunken area on the fruit appearred at the final stage. Dense hyphae and short sporangiophores grew out from the lesions, and they produce abundant zoosporangia on them. The disease was identified from buck-eye rot caused by Phytophthora parasitica in that the cottony growth of hyphae and rare zoosporangia formation. The pathogen was isolated and indentified on the basis of the pathogenecity and morphology comparing with P. parasitica.

  • PDF

Screening rhizobacteria for biological control of root rot and Phytophthora blight on glnseng.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.103.2-104
    • /
    • 2003
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. During 3 or 5 years cultivation of ginseng, yield losses can reach as high as 30-60% due to numerous diseases in Korea. Among 106 Bacillus strains isolated from various plant internal roots, we selected three promising biocontrol agents by screening against root rot caused by Cylindrocarpon destructan in a greenhouse. Preinoculation of selected isolates to seed or one-year-old root resulted in stimulation of shoot and/or root growth of seedlings, and control of root rot in infested soils with Cylindronrpon destructans (P=0.05). Furthermore, drenching of selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight when the seedlings were challenged with zoospores of Phytophthora cactorum (P=0.05). However, isolates B1141 and B1142 did not show any antifungal activity against various soilborne pathogens while B1146 did in vitro. Our results provide an insight that rhizobacteria can induce resistance against various plant diseases on ginseng even if any resistant breeds have been unknown on ginseng yet.

  • PDF