• Title/Summary/Keyword: Physiological signal

Search Result 432, Processing Time 0.027 seconds

Development of an Automatic Expert System for Human Sensibility Evaluation based on Physiological Signal (생리신호를 기반으로 한 자동 감성 평가 전문가 시스템의 개발)

  • Jeong, Sun-Cheol;Lee, Bong-Su;Min, Byeong-Chan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The purpose of this study was to develop an automatic expert system for the evaluation of human sensibility, where human sensibility can be inferred from objective physiological signals. The study aim was also to develop an algorithm in which human arousal and pleasant level can be judged by using measured physiological signals. Fuzzy theory was applied for mathematical handling of the ambiguity related to evaluation of human sensibility. and the degree of belonging to a certain sensibility dimension was quantified by membership function through which the sensibility evaluation was able to be done. Determining membership function was achieved using results from a physiological signal database of arousal/relaxation and pleasant/unpleasant that was generated from imagination. To induce one final result (arousal and pleasant level) based on measuring the results of more than 2 physiological signals and the membership function of each physiological signal. Dempster-Shafer's rule of combination in evidence was applied, through which the final arousal and pleasant level was inferred.

Physiological signal Modeling for personalized analysis (개인화된 신호 해석을 위한 맥락 기반 생체 신호의 모델링 기법)

  • Choi, Ah-Young;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.173-177
    • /
    • 2009
  • With the advent of light-weight daily physiological signal monitoring sensors, intelligent inference and analysis method for physiological signal monitoring application, commercialized products and services are released. However, practical constraints still remain for daily physiological signal monitoring. Most devices provide rough health check function and analyze with randomly sampled measurements. In this work, we propose the probabilistic modeling of physiological signal analysis. This model represent the relationship between previous user measurement (history), other group`s type, model and current observation. From the experiment, we found that the personalized analysis with long term regular data shows reliable result and reduces the analyzing errors. In addition, participants agree that the personalized analysis shows reliable and adaptive information than other standard analysis method.

  • PDF

A Study on HMI Assessment of Joystick Driving System Using the Physiological Signal Measurement Method (생리신호 측정기법을 이용한 Joystick 운전방식의 HMI 평가연구)

  • Kim, Bae-Young;Koo, Tae-Yun;Bae, Chul-Ho;Park, Jung-Hoon;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Recently, the vehicle driving device has been designed for driver's convenience. Especially, the automobile industry develops the vehicle using the joystick instead of steering wheel from the concept car. The biggest strength of using the joystick is that the driver feels less workload and fatigue than when the driver uses steering wheel. However, this kind of study still needs more research and experiments for more accurate result. Therefore, this research evaluated workload according to the driving device by the survey and the measurement of physiological signal. The reason not only using the survey also using the measurement of physiological signal is to support the result of the survey which is not enough to bring the accurate result. There were tow different kinds of methods to carry out this research; SWAT (Subjective Workload Assessment Technique) for the survey and the biopac equipment for the measurement of physiological signal. Furthermore, previously established driving simulator, GPS (Global Positioning System), and Seoul-Cheonan virtual expressway DB were used for the experiment. As the result of the experiment with 13 subjects, it was certain that using joystick device brings less workload and fatigue to the drivers than using steering wheel following both methods-the survey and the measurement of physiological signal. Also, it confirmed the significant result from the SPSS (Statistical Package for the Social Sciences) statistics analysis program.

BioPebble: Stone-type physiological sensing device Supporting personalized physiological signal analysis (BioPebble: 개인화된 해석을 지원하는 돌 타입 휴대용 생체신호 측정센서)

  • Choi, Ah-Young;Park, Go-Eun;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.13-18
    • /
    • 2008
  • In these days, wearable and mobile physiological sensing devices have been studied according to the increasing interest on the healthy and wellbeing life. However, these sensing devices display just the sensing results, such as heart rate, skin temperature, and its daily records. In this work, we propose the novel type of mobile physiological sensing device which deliver the user comfortable grabbing feeling. In addition, we indicate the personalized physiological signal analysis result which be concluded by the different analysis results according to the person to person. In order to verify this sensing device, we collect the data set from 4 different users during a week and measure the physiological signal such as heart rate, hand temperature, and skin conductance. And we observe the result how the analysis results shows the difference between the users. We expect that this work can be applied in the various health care applications in the near future.

  • PDF

Sound Quality Evaluation of Turn-signal of a Passenger Vehicle based on Brain Signal (뇌파 측정을 이용한 차량 깜빡이 소리의 음질 평가)

  • Shin, Tae-Jin;Lee, Young-Jun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1137-1143
    • /
    • 2012
  • This paper presents the correlation between psychological and physiological acoustics for the automotive sound. The research purpose of this paper is to evaluate the sound quality of turn-signal sound of a passenger car based EEG signal. The previous method for the objective evaluation of sound quality is to use sound metrics based on psychological acoustics. This method uses not only psychological acoustics but also physiological acoustics. For this work, the sounds of 7 premium passenger cars are recorded and evaluated subjectively by 30 persons. The correlation between this subjective rating and sound metrics is calculated based on psychological acoustics. Finally the correlation between the subjective rating and the EEG signal measured on the brain is also calculated. Throughout these results the new evaluation system for the sound quality on interior sound of a passenger car has been developed based on bio-signal.

Clinical diagnostic study of Physiological Signal data measured on 58 cases of numbness with EAV(Electro-puncture According to Voll) (비증환자(痺證患者) 58례(例)에 대(對)한 EAV측정치(測定値)의 진단적(診斷的) 고찰(考察))

  • Han, Sang-Gyun;Ha, Chi-Hong;Cho, Myung-Rae;Ryu, Chung-Ryul;Lee, Byung-Ryul
    • Journal of Acupuncture Research
    • /
    • v.18 no.4
    • /
    • pp.91-100
    • /
    • 2001
  • Background and Objective : Most diagnostic method for numbness were invasive and complex. So we need to simplify and objectify diagnostic method for numbness. Some study with EAV which is one of Physiological Signal Measuring Instruments, report significantly result as objective diagnostic method for other clinical symptom. By using EAV, we have obtained some physiological signal data from meridian-acupoints of 58 numbness cases. Objective and Methods : This study researched into the clinical statistics for 58 case who ware in numbness, and they ware treated with oriental medical care at the Dong-shin university oriental hospital during 1 year from April 3 2000 to March 30 2001. The data were analyzed and interpreted to compare with traditional differentiation of symptom-complexes, then further evaluated as the Five Evolutive Phases to make them differentiated. The EAV valus of Five Evolutive Phases were identified with the sequence of wood(木), fire(火), earth(土), steel(金), water(水). Results and Conclusion : These values of physiological signal were identical with standard differentiation of symptom-complexes of numbness which is the main cause of dishannonious flow of Qi and blood of the in the liver and deficiency of Qi and blood of the bladder with stagnancy of dampness. Among Five Evolutive Phases, Earth and wood values were increased, steel, fire and water were decreased significantly. This data imply the possibility of somewhat generalization from measuring instruments.

  • PDF

Context categorization of physiological signal for protecting user's privacy (사생활 보호를 위한 생체 신호기반 컨택스트 분석 및 구분기법)

  • Choi, Ah-Young;Rashid, Umar;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.960-965
    • /
    • 2006
  • Privacy and security are latent problems in pervasive healthcare system. For the sake of protecting health monitoring information, it is necessary to classify and categorize the various contexts in terms of obfuscation. In this paper, we propose the physiological context categorization and specification methodology by exploiting data fusion network for automatic context alignment. In addition, we introduce the methodologies for making various level of physiological context on the context aware application model, which is wear-UCAM. This physiological context has several layers of context according to the level of abstraction such as user-friendly level or parametric level. This mechanism facilitates a user to restrict access to his/her monitoring results based on the level of details in context.

  • PDF

Design of Hybrid Unsupervised-Supervised Classifier for Automatic Emotion Recognition (자동 감성 인식을 위한 비교사-교사 분류기의 복합 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1294-1299
    • /
    • 2014
  • The emotion is deeply affected by human behavior and cognitive process, so it is important to do research about the emotion. However, the emotion is ambiguous to clarify because of different ways of life pattern depending on each individual characteristics. To solve this problem, we use not only physiological signal for objective analysis but also hybrid unsupervised-supervised learning classifier for automatic emotion detection. The hybrid emotion classifier is composed of K-means, genetic algorithm and support vector machine. We acquire four different kinds of physiological signal including electroencephalography(EEG), electrocardiography(ECG), galvanic skin response(GSR) and skin temperature(SKT) as well as we use 15 features extracted to be used for hybrid emotion classifier. As a result, hybrid emotion classifier(80.6%) shows better performance than SVM(31.3%).

Implementation of four-subject four-channel optical telemetry system with enforced synchronization (강제 동기식 4생체 4채널 광펠레미트리시스템 구현)

  • ;;;M.Ishida
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.40-47
    • /
    • 1998
  • This paper presents the physiological signal processing CMOS one chip for transmitting human bodys small electrical signals such as electrocardiogram(EKG) or electromyogram(EMG) and the external system for receiving signals was implemented by the commercial ICs. For simultaneous four-subject four-channel telemetry, a new enfored synchronization techniqeu using infrared bi-directional communication has been proposed. The telemeter IC with the size of 5.1*5.1mm$^{2}$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject-selection signal, time multiplexing of 4-channel modulated physiological signals, transmitting of telemetry signal to external system and auto power down control. The newly designed synchronized oscillator with low supply voltage dependence in the telemeter IC operates at a supply voltage from 4.6~6.0V and the nonlinearity error of PIM modulator was less than 1.2%F.S(full scale). The power saving block operates at the period of 2.5ms even if the telemetry IC does not receive command signal from external system for a constant time.

  • PDF