• Title/Summary/Keyword: Physiological flow

Search Result 447, Processing Time 0.03 seconds

Electroosmosis in skin during iontophoresis: effect of pH, current density and ionic strength

  • Kim, Su-Youn;Kang, Rae-Young;Kim, Hye-Ji;Roh, Kyung-Eun;Oh, Seaung-Youl
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.294.1-294.1
    • /
    • 2003
  • At pH 7.4 (physiological pH), skin is permselective to cations, due to the net negative charge of the current passing channels (pores) in skin. This causes the convective solvent flow (electroosmotic flow) from anode to cathodal direction. In this work, we have investigated several factors (pH. current density and ionic strength) that can affect the electroosmotic flow. (omitted)

  • PDF

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.

Shear Stress and Atherosclerosis

  • Heo, Kyung-Sun;Fujiwara, Keigi;Abe, Jun-Ichi
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.435-440
    • /
    • 2014
  • Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flowdependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.

Classification of Negative Emotions based on Arousal Score and Physiological Signals using Neural Network (신경망을 이용한 다중 심리-생체 정보 기반의 부정 감성 분류)

  • Kim, Ahyoung;Jang, Eun-Hye;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.177-186
    • /
    • 2018
  • The mechanism of emotion is complex and influenced by a variety of factors, so that it is crucial to analyze emotion in broad and diversified perspectives. In this study, we classified neutral and negative emotions(sadness, fear, surprise) using arousal evaluation, which is one of the psychological evaluation scales, as well as physiological signals. We have not only revealed the difference between physiological signals coupled to the emotions, but also assessed how accurate these emotions can be classified by our emotional recognizer based on neural network algorithm. A total of 146 participants(mean age $20.1{\pm}4.0$, male 41%) were emotionally stimulated while their physiological signals of the electrocardiogram, blood flow, and dermal activity were recorded. In addition, the participants evaluated their psychological states on the emotional rating scale in response to the emotional stimuli. Heart rate(HR), standard deviation(SDNN), blood flow(BVP), pulse wave transmission time(PTT), skin conduction level(SCL) and skin conduction response(SCR) were calculated before and after the emotional stimulation. As a result, the difference between physiological responses was verified corresponding to the emotions, and the highest emotion classification performance of 86.9% was obtained using the combined analysis of arousal and physiological features. This study suggests that negative emotion can be categorized by psychological and physiological evaluation along with the application of machine learning algorithm, which can contribute to the science and technology of detecting human emotion.

Experimental Study on Cerebral Hemodynamics during Observation of Plants

  • Suda, Ayumu;Lee, Ju-Young;Fujii, Eijiro
    • Proceedings of the Korean Institute of Landscape Architecture Conference
    • /
    • 2007.10b
    • /
    • pp.214-219
    • /
    • 2007
  • Psychological and physiological effects of plants were studied by investigating human responses while observing plants. Eighteen healthy adult male(aged between $19{\sim}25$ years) participated in this study. Semantic differential method(SD method) and multi-channel near-infrared spectroscopy(NIRS) were used to survey verbal and non-verbal response, respectively. Cerebral hemodynamics as a new evaluation index of brain activity was recorded for right brain hemisphere where visual information is mainly delivered. Thirty seconds of cerebral blood flow in forty seven channels were calculated when watching five types of picture images with different rates of hedge against gray block wall; 0:10, 3:7, 5:5, 7:3, 10:0. In the SD results, similar evaluations were found in all subjects. However, the change of cerebral hemodynamics as a non-verbal response varied among subjects. Largely two patterns of hemodynamics change were found with increasing plants rate in picture images; group A showed significant decreases of blood flow volume in many cortical regions, Group B had significant increase of blood flow volume in the occipital region for the scenes seen comparatively more plant. Our findings on the cerebral hemodynamics may indicate that there are two patterns of brain activity during observation of plants; group A in which brain areas associated with visual information and thinking work simultaneously to the visual stimuli; group B in which brain areas associated only with visual information work.

  • PDF

Effect of antibiotics treatment for edwardsiellosis of olive flounder Paralichthys olivaceus in biofloc environment (바이오플락 환경에서 넙치(Paralichthys olivaceus)의 에드워드병에 대한 항생제 치료 효과)

  • Park, Jung Jun;Kim, Seokryel
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.225-231
    • /
    • 2021
  • In biofloc culture for olive flounder, Paralichthys olivaceus, the possibility of antibiotics treatment was investigated against edwardsiellosis. After inducing edwardsiellosis by immersion in Edwardsiella tarda 1.2 × 105/mL suspension, the survival trends on various biofloc water management and some physiological changes were observed. For biofloc water management, six types of water treatments were carried out, which were no exchange without antibiotics as negative control, the exchange to stored biofloc water, the exchange to stored biofloc water with 20% flow-through, the exchange to fresh biofloc water, half fresh biofloc water and half sea water, and the complete flow-through. There was no significant physicochemical change on water qualities in any type. The exchange to fresh biofloc water was shown the highest survival ratio as 72.3%, and in case of stored biofloc water with 20% flow-through, the survival ratio was also significantly high as 62%. Plasma glucose, cholesterol, total protein, calcium, and magnesium were analyzed as physiological index. Mostly, there was no significant change, but plasma cholesterol showed an initial decrease in low survival group, and an initial increase with high survival group. Consequently, antibiotic treatment against a bacterial disease during biofloc culture is possible as long as the biofloc water management follow along properly.

Changes in Physiological Responses by the Pressure of Non-Elastic Corset (비신축성 코르셋의 의복압으로 인한 생리적 반응의 변화)

  • Na, Young-Joo;Kim, Yang-Hee
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.943-951
    • /
    • 2011
  • The purpose of this study is to analyze the physiological effects of non-elastic corset on women's health and pain through measuring the clothing pressure, subjective pressure sensation, blood velocity and metabolism. 5 women in their twenties were picked as our subjects, their average size being 85cm at bust girth, 69 cm at waist girth. With the subjects each wearing a corset, we are testing in artificial environment with a treadmill according to the planned exercise procedures. The average pressure of the corset is 0.938 kPa (maximum 3.006 kPa at 45 degree front bowing), which is 10.2 times higher than the control group, averaging from 9.3 times higher at resting, 11.4 times at walking, 11.1 times at running. The effect of corset pressure on the physiological responses of the body is increased more when exercise than when resting. Clothing pressure increased in the order of the postures: sitting > standing with 45 degree bowing > standing. They experienced a high level of tighten discomfort of 5.6 in the scale of 1.0 to 7.0 due to the high pressure of the corset when resting, after intense exercise the level increased to 6.0, while without corset the level increased 1.7 to 2.2. With corset on, the blood circulation did not increase even though when the body exercised and blood flow became unbalanced making great gaps between both at the right and left finger tips. Perspiration of chest and back decreased 37.3% when wearing corset; 27.5% at resting, 56.7% at walking, 25.8% at running, and 39.0% at recovery. With corset on oxygen consume and metabolism increased 9.0%, 7.9%, respectively, which means the corset makes the body uncomfortable. Lung volume exchange VE decreased almost 4.1~7.3% with corset on and $VCO_2/VO_2$, RER and total volume in lung, VT also decreased too, which means the digestion of stomach and lung function are inhibited due to the high corset pressure.

Thermophysiological Responses of the 60's Male and Female in Hot and Cold Environment (여름, 겨울 환경에 따른 60대 남녀의 온열 생리적 특성연구)

  • Lee, Jung-Sug;Kim, Hee-Eun;Song, Min-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.668-675
    • /
    • 2008
  • The purpose of this study was to collect data of skin temperature and physiological responses which is useful for standardization of insulation measurement in various garments. And we investigated sex and season difference of physiological responses of 60's males and 60's females in hot and cold environment. Healthy ten 60's males and ten 60's females volunteered as subjects. The experiment was conducted three times; One for winter condition($5^{\circ}C$, 45%), another for summer condition($30^{\circ}C$, 65%) and the other for nude condition as control($30^{\circ}C$, 65%). The subjects were sitting for 1 hour with suitable ensemble on each experimental condition in climate chamber. We measured skin temperature, rectal temperature, heart rate, oxygen uptake, sweat rate, blood flow, blood pressure and subjective sensations. We found that skin temperature and most of physiological responses were higher in male subject, summer condition than in female subject, winter condition.

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.