• Title/Summary/Keyword: Physiological cycle

Search Result 297, Processing Time 0.024 seconds

Relationship between Intersequence Pauses, Laying Persistency and Concentration of Prolactin during the Productive Period in White Leghorn Hens

  • Reddy, I.J.;David, C.G.;Singh, Khub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.686-691
    • /
    • 2005
  • Prolactin is considered to influence the taking of pauses in between ovulatory sequences in White Leghorn hens. Therefore modulating concentrations of prolactin using bromocriptine - a dopamine agonist during early life (17 to 36 weeks of age) could overcome the inhibitory effects of high concentration of prolactin on ovarian activity. The effect of modulation of prolactin concentration on egg production, sequence length and inter sequence pauses were studied by analyzing the oviposition records from 19 to 72 weeks were studied and compared with untreated controls. Bromocriptine administered subcutaneously (100 $\mu$g kg$^{-1}$ body weight or orally through feed (640 $\mu$g day$^{-1}$ bird$^{-1}$) resulted in a steady and sustained decrease in prolactin levels (p<0.01) during and after the withdrawal of treatment up to one reproductive cycle (72 weeks of age). The treated birds had comparatively longer sequences (p<0.01) and fewer pauses (p<0.01). Egg production increased (p<0.01) by fourteen per cent through subcutaneous administration and eleven per cent through oral feeding, over the control birds. It is concluded that the physiological pauses that occur during ovulatory sequences can be disrupted effectively using bromocriptine. Prolactin levels are modulated which may interfere with the follicular recruitment and subsequent oviposition thereby improve egg laying potential of the bird.

Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

  • Zhou, Caihong;Shen, Qi;Xue, Jinglun;Ji, Chaoneng;Chen, Jinzhong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular $TTRAP^{E152A}$, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis.

Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements - A review

  • Upadhaya, Santi Devi;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1885-1895
    • /
    • 2020
  • Vitamins and minerals categorized as micronutrients are the essential components of animal feed for maintaining health and improving immunity. Micronutrients are important bioactive molecules and cofactors of enzymes as well. Besides being cofactors for enzymes, some vitamins such as the fat-soluble vitamins, vitamin A and D have been shown to exhibit hormone-like functions. Although they are required in small amount, they play an influential role in the proper functioning of a number of enzymes which are involved in many metabolic, biochemical and physiological processes that contribute to growth, production and health. Micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Thus, micronutrients must be provided to livestock in optimal concentrations and according to requirements that change during the rapid growth and development of the animal and the production cycle. The supply of nutrients to the animal body not only depends on the amount of the nutrient in a food, but also on its bioavailability. The bioavailability of these micronutrients is affected by several factors. Therefore, several technologies such as nanoparticle, encapsulation, and chelation have been developed to improve the bioavailability of micronutrients associated with bone health. The intention of this review is to provide an updated overview of the importance of micronutrients on bone health and methods applied to improve their bioavailability.

The uniqueness of the plant mitochondrial potassium channel

  • Pastore, Donato;Soccio, Mario;Laus, Maura Nicoletta;Trono, Daniela
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.391-397
    • /
    • 2013
  • The ATP-inhibited Plant Mitochondrial $K^+$ Channel ($PmitoK_{ATP}$) was discovered about fifteen years ago in Durum Wheat Mitochondria (DWM). $PmitoK_{ATP}$ catalyses the electrophoretic $K^+$ uniport through the inner mitochondrial membrane; moreover, the co-operation between $PmitoK_{ATP}$ and $K^+/H^+$ antiporter allows such a great operation of a $K^+$ cycle to collapse mitochondrial membrane potential (${\Delta}{\Psi}$) and ${\Delta}pH$, thus impairing protonmotive force (${\Delta}p$). A possible physiological role of such ${\Delta}{\Psi}$ control is the restriction of harmful reactive oxygen species (ROS) production under environmental/oxidative stress conditions. Interestingly, DWM lacking ${\Delta}p$ were found to be nevertheless fully coupled and able to regularly accomplish ATP synthesis; this unexpected behaviour makes necessary to recast in some way the classical chemiosmotic model. In the whole, $PmitoK_{ATP}$ may oppose to large scale ROS production by lowering ${\Delta}{\Psi}$ under environmental/oxidative stress, but, when stress is moderate, this occurs without impairing ATP synthesis in a crucial moment for cell and mitochondrial bioenergetics.

Encystment of Azotobacter vinelandii

  • Pae, Kyoung-Hoon;So, Jae-Seong
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.27-31
    • /
    • 1993
  • Certain bacterial species possess the capability of differentiation through several morphogenetic changes which enable them to adapt to certain internal and external stimuli(Losick and Shapiro 1984). Upon induction, cells of A. vinelandii undergo a morphological process which leads to the production of one cyst per cell (Sadoff, 1975). The cysts are considerably resistant to desiccation, which confers a survival advantages upon the organism(Socolofsky and Wyss 1962). Like other prokaryotic differentiations encystment provides a relatively simple model of cellular differentiation. Like in other differentiating bacteria, vegetative growth can be separated from differentiation. Furthermore, the differentiation cycle can be synchronized by specific inducer. There have been a great deal of morphological and physiological studies on this process. However, the mechanisms used to regulate cell differentiation can be clearly defined by careful genetic analysis of the process. Unfortunately, A. vinelandii has proven to be difficult for genetic analysis (Sadoff 1975). For example, it has been shown that a variety of metabolic mutants of Azotobacter speicies are difficult to isolate after mutagenesis with chemical mutagens or UV irradiation. Nevertheless recent advances in molecular genetics in Azotobacter species, especially in the nitrogen fixation research area, appear to be able to overcome this difficulty (Robinson et al. 1986; Kennedy et al. 1986).

  • PDF

A Novel Therapeutic Measure for Metabolic Acidosis with Amino Acids

  • Kim, Jun;Goo, Yong-Sook;Kim, Sang-Jeong;Park, Sang-Chul;Koh, Chang-Soon
    • The Korean Journal of Physiology
    • /
    • v.26 no.1
    • /
    • pp.89-97
    • /
    • 1992
  • In hypoxic tissue conditions, pyruvate can not enter the Krebs cycle and lactic acid, produced from pyruvate, accumulates to induce lactic acidosis. Pyruvate, However, can also be converted to alanine by glutamate pyruvate transaminase, that could be enhanced by glutamate. Therefore, it would be a fundamental measure to treat the lactic acidosis in tissue hypoxic conditions when one can convert the accumulated lactic acid, through pyruvate, to alanine. To test the above hypothesis, we induced a lactic acidosis in cats and the effect of glutamate on recovery of acid base state and removal of the lactic acid from blood were assessed and the results were compared with those of bicarbonate administration, which is one of the most frequently used conventional measure for correction of the acid base state during lactic acidosis. The results were that glutamate and combined glutamate bicarbonate solutions not only restored the acid base status completely from the lactic acidosis in an hour or two, but also restored the blood level of lactate partially. We concluded that administration of glutamate solution to convert pyruvate into alanine is effective in preventing lactic acid accumulation and treating lactic acidosis.

  • PDF

Study for Research Trends on Radioprotective Effects of Herbs (한약의 방사선 부작용 억제효과에 관한 경향 분석)

  • Lee, Soo-Jin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.559-565
    • /
    • 2010
  • Cancer is already a well-recognized main cause of mortality and the incidence of cancer is increasing steadily. Because conventional treatment modalities for cancer accompanies severe side effects, traditional medicine has been considered as alternatives to reduce the adverse effects and its use has continued to rise in cancer therapy. This study aims to summarize and make a reference of radioprotective effects of herbs worldwide. In this process, this review surveyed all papers of radioprotective-focused studies using herbal medicine in PubMed database and finally 44 papers were included. The type of materials, formation of experiments, type of herbal medicine, their action and mechanisms, and type of cancer were analyzed. The number of studies on radioprotective effects of herbal medicine has increased since 2000. The main formation of experiments was clinical study and the portion was 45% and the proportion of the research using prescriptions was 51% and the research using herbal products was 25%. Herbs and prescriptions having the effects of tonifying and nourishment were used the most. Most of herbal medicine in this study can enhance immune function, increase anti-oxidant effect, regulate cell cycle and increase sensitivity to radiotherapy. This study will provide the useful information on development of herbal medicine having radioprotective effects.

DNA damage to human genetic disorders with neurodevelopmental defects

  • Lee, Youngsoo;Choi, Inseo;Kim, Jusik;Kim, Keeeun
    • Journal of Genetic Medicine
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Although some mutations are beneficial and are the driving force behind evolution, it is important to maintain DNA integrity and stability because it contains genetic information. However, in the oxygen-rich environment we live in, the DNA molecule is under constant threat from endogenous or exogenous insults. DNA damage could trigger the DNA damage response (DDR), which involves DNA repair, the regulation of cell cycle checkpoints, and the induction of programmed cell death or senescence. Dysregulation of these physiological responses to DNA damage causes developmental defects, neurological defects, premature aging, infertility, immune system defects, and tumors in humans. Some human syndromes are characterized by unique neurological phenotypes including microcephaly, mental retardation, ataxia, neurodegeneration, and neuropathy, suggesting a direct link between genomic instability resulting from defective DDR and neuropathology. In this review, rare human genetic disorders related to abnormal DDR and damage repair with neural defects will be discussed.

Growth Arrest and Apoptosis of Human Uterine Cervical Carcinoma Cells Induced by Trichosanthes Semen Extract (과루인이 자궁경부암세포의 성장억제 및 세포고사에 미치는 영향)

  • Lee Jeong Gu;Kim Yeon Hee;Lee Dong Nyung;Kim Hyung Jun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.965-972
    • /
    • 2005
  • To investigate the effects of Trichosanthes semen extract on the growth and apoptosis of human uterine cervical carcinoma cells. Effects of Trichosanthes semen extract on the growth of ME-180 cells were assayed by MTT assay. Apoptosis induced by Trichosanthes semen extract was detected by fluorescent microscopy, DNA fragmentation analysis and flow cytometry. Caspase-3 and caspase-8 activities were assayed. Trichosanthes semen extract induced ME-180 cells to die in a dose- and time-dependent manner. ME-180 cells treated with Trichosanthes semen extract exhibited typical characteristics of apoptosis. The population of Sub-G1 cells increased significantly, and the cells represented the reduced size, condensed chromatin and apoptotic bodies. They showed the decreased mitochondrial membrane potential and increased activities of caspase-3 and caspase-8. The results suggest that Trichosanthes semen extract induced ME-180 cell apoptosis and the activation of caspase and mitochondrial pathway were involved in the process of Trichosanthes semen extract-induced apoptosis.

Effects of Oriental Medicinal Drugs on Axonal Regeneration in the Spinal Cord Neurons

  • An Joung-Jo;NamGung Uk;Seo In-Chan;Kim Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1640-1646
    • /
    • 2005
  • An oriental medicinal drugs Jahageo (JHG, Hominis placenta) were examined to determine its effects on the responsiveness of central nervous system neurons after injury. We found that JHG was involved in neurite outgrowth of DRG sensory axons. JHG treatment also increased expression of axonal growth-associated protein GAP-43 in DRG sensory neurons after sciatic nerve injury and in the injured spinal cord. JHG treatment during the spinal cord injury increased induction levels of cell division cycle 2 (Cdc2) protein in DRG as well as in the spinal cord. Histochemical investigation showed that induced Cdc2 in the injured spinal cord was found in non-neuronal cells. These results suggest that JHG regulates activities of non-neuronal cells such as oligodendrocyte and astrocyte in responses to spinal cord injury and protects neuronal responsiveness after axonal damage.