• Title/Summary/Keyword: Physiological MRI

Search Result 60, Processing Time 0.023 seconds

A Study of The Correlation of The Area Dose with Residual CT Contrast Media and MRI Contrast Media during The Use of General Imaging Automatic Exposure Control System (일반촬영 자동노출제어장치 사용 시 잔존 CT 조영제와 MRI 조영제에 따른 면적선량의 상관성 연구)

  • Hong, Chan-Woo;Park, Jin-Hun;Lee, Jung-Min;Seo, Young-Deuk
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.619-627
    • /
    • 2016
  • The purpose of this study is to investigate the effect of CT contrast agent and MRI contrast agent on the area dose in the body when using automatic exposure control system in general radiography. After making rectangular holes in the center of the abdominal thickness paraffin phantom, CT contrast agent and MRI contrast agent were respectively diluted with physiological saline solution for contrast medium dilution ratio of 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10%. Each experiment was set to 78 kVp, 320 mA, which is the proper condition for KUB photography, and thereafter a total of 30 inspections were made for each dilution ratio using an automatic exposure control device, and the area dose corresponding to the dilution ratio of each contrast agent, Average comparison and correlation analysis were performed on the exposure index. As a result, the CT contrast agent and the MRI contrast agent appeared different in area dose according to the dilution ratio(p<0.05), and as the dilution ratio increased, the area dose increased for CT contrast agent and MRI contrast agent(P<0.05). In each test, the exposure index showed the manufacturer's recommendation of 200-800 EI value, and the exposure index and area dose increased as the area dose increased(p<0.05). In conclusion, CT contrast agent and MRI contrast agent confirmed to increase the area dose by general imaging test using all automatic exposure control device. Therefore, it is considered that it is necessary to perform it after the contrast medium has been excreted sufficiently when using usual imaging test after using the contrast agent in CT and MRI examination.

Cardiac Magnetic Resonance Imaging Using Multi-physiological Intelligent Trigger System (멀티 생체신호 동기 시스템을 이용한 심장자기공명영상)

  • Park, Jinho;Yoon, Jong-Hyun;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose : We proposed a multi-physiological signals based real-time intelligent triggering system(MITS) for Cardiac MRI. Induced noise of the system was analyzed. Materials and Methods: MITS makes cardiac MR imaging sequence synchronize to the cardiac motion using ECG, respiratory signal and second order derivative of $SPO_2$signal. Abnormal peaks due to arrhythmia or subject's motion are rejected using the average R-R intervals and R-peak values. Induced eddy currents by gradients switching in cardiac MR imaging are analyzed. The induced eddy currents were removed by hardware and software filters. Results: Cardiac MR images that synchronized to the cardiac and respiratory motion are acquired using MITS successfully without artifacts caused by induced eddy currents of gradient switching or subject's motion or arrhythmia. We showed that the second order derivative of the $SPO_2$ signal can be used as a complement to the ECG signals. Conclusion: The proposed system performs cardiac and respiratory gating with multi-physiological signals in real time. During the cardiac gating, induced noise caused by eddy currents is removed. False triggers due to subject's motion or arrhythmia are rejected. The cardiac MR imaging with free breathing is obtained using MITS.

Multi-biological Signal-based Smart Trigger System for Cardiac MRI (다중 생체 신호를 이용한 심장 자기공명영상 스마트 트리거 시스템)

  • Yang, Young-Joong;Park, Jinho;Hong, Hye-Jin;Ahn, Chang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.945-949
    • /
    • 2014
  • In cardiac magnetic resonance imaging (CMRI), heart and respiratory motions are one of main obstacles in obtaining diagnostic quality of images. To synchronize CMRI to the physiological motions, ECG and respiratory gatings are commonly used. In this paper multi-biological signal (ECG, respiratory, and SPO2) based smart trigger system is proposed. By using multi-biological signal, the proposed system is robust to the induced noise such as eddy current when gradient pulsing is continuously applied during the examination. Digital conversion of the multi-biological signal makes the system flexible in implementing smart and intelligent algorithm to detect cardiac and respiratory motion and to reject arrhythmia of the heart. The digital data is used for real-time trigger, as well as signal display, and data storage which may be used for retrospective signal processing.

Internal Quality Evaluation and Age Identification of Fresh Korean Ginseng using Magnetic Resonance Imaging (자기공명영상을 이용한 수삼의 내부 품질평가 및 연근판정)

  • 임종국;김철수;이승조;김성민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • The purpose of this study is to characterize the internal physical properties of fresh Korean ginsengs (Panax ginseng C.A. Meyer) through a magnetic resonance imaging (MRI) technique. Current external visual inspection cannot determine internal quality of ginsengs successfully. Relaxation time constants, T$_1$ and T$_2$*, were obtained from a series of MR images. Calculated Ti values were varied with different physiological states of ginseng tissues. Internal imaging information was obtained nondestructively from fresh ginsengs. One- and two-dimensional image analyses were performed. One-dimensional image analysis showed a potential of age identification of ginsengs rapidly. Internal quality of normal and abnormal ginsengs was evaluated using two-dimensional MR images. Various types of internal defects such as internal cavity and rotten spot were visualized clearly. The MRI technique had a feasibility to detect internal defects of fresh ginsengs effectively.

Evaluation of the lateral ventricle using MRI in normal micropigs

  • Choi, Mihyun;Lee, Namsoon;Yi, Kangjae;Kim, Junyoung;Choi, Mincheol
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.227-231
    • /
    • 2011
  • This study was undertaken to assess the lateral ventricle, which was some portion of brain and related to congenital anomalies, from 1, 2, 4, and 8 months of age in healthy micropigs. They were induced general anesthesia and performed magnetic resonance imaging (MRI) with a 0.3 Tesla magnet. Each age group was evaluated by three subjects such as lateral ventricular volume, ventricular volume ratio and asymmetry. T1 weighted transverse images were acquired for calculation of lateral ventricular and corresponding brain parenchyma areas. The ratio of bilateral ventricle areas used to analyze the asymmetry. The mean ventricular volumes of each month were $676.74{\pm}25.58mm^3$ (1 month-old), $630.64{\pm}143.84mm^3$ (2 month-old), $992.12{\pm}106.03mm^3$ (4 month-old) and $1172.62{\pm}237.57mm^3$ (8 month-old), respectively. The ventricular volume ratio was the smallest at 2 month-old and re-increased from that age. The ratio was significantly different between 2 month-old and other age groups (p < 0.05). The value of bilateral area ratio showed within 1.5 in all experimental animals. Consequently the lateral ventricle showed a positive correlation with aging and symmetric shapes in both sides. The developmental pattern of the lateral ventricle provides basic data in micropigs as an experimental animal model for physiological and neurosurgical approach.

In Vivo Non Invasive Molecular Imaging for Immune Cell Tracking in Small Animals

  • Youn, Hyewon;Hong, Kee-Jong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2012
  • Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic whole-body imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.

Study of the Difference in Residual Amounts according to the Method of Securing Intravenous Injections and the Dose of Physiological Saline during 18F-FDG Administration (18F-FDG 투여 시 정맥주사 확보 방법 및 생리식염수 용량에 따른 잔류량의 차이에 관한 연구)

  • Ryu, Chan-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • This study compares the difference between the remaining amount in syringes according to injection method and the dose of physiological saline when the radiopharmaceutical 18F-FDG isotope is injected into patients who visited the hospital for PET examination. After performing a CT or MRI using a contrast medium when 18F-FDG was injected into 40 patients who came to the hospital for PET examination without removing the 3-way, the radioactivity remaining in the syringe and the 3-way was measured and the dose of radioactivity confirmed. At this time, 20 patients were divided into different dose groups of physiological saline. Another injection method was used to compare the remaining amount of the syringe and the difference in the remaining amount according to the amount of physiological saline when the injection was performed with an extension. After an injection of 18F-FDG, the actual administered dose was confirmed by measuring the radioactivity remaining in the syringe and the 3-way or extension with a calibrator. As a result of measuring the radioactivity of the syringe before administering the radiopharmaceutical and the radioactivity of the syringe and the 3-way or extension after administration, the 3-way injection method in 10 cc's of physiological saline had the lowest residual amount. The remaining amount increased in the order of the extension to 10 cc's of saline and the 3-way to 5 cc's of saline. Likewise, the 5 cc's saline solution and the extension injection method demonstrated the highest residual amounts. The residual difference with the lowest level of remaining injection method was found to be 0.053 mCi. It was found that in a PET examination, by considering the radioactivity remaining in the 3-way and extension and by adjusting the dose of physiological saline, if the intended dose to be administered to the actual patient is determined, it is possible to administer the radiopharmaceutical to the patient more accurately.

Study on the Human Influence according to RF Pulse Intensity by use Dental Implant on BRAIN MRI: Using the XFDTD Program (Brain MRI 검사 시 치아 임플란트 시술유무와 RF Pulse 세기에 따른 인체 영향에 관한 연구: XFDTD 프로그램을 이용)

  • Choe, Dea-yeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.361-370
    • /
    • 2017
  • In the Brain MRI, RF Pulse is irradiated on the human body in order to acquire an image. At this time, a considerable part of the irradiated RF Pulse energy is absorbed as it is in our body. This will raise the temperature of the human body, but depending on the extent of exposure, it will affect the human body. The change of the SAR and the temperature of the head according to the change of the magnetic field strength is examined. And to investigate the difference in results depending on the use of dental implant. In the human head model, 64 MHz RF Pulse frequency generated from 1.5 T, 128 MHz RF Pulse frequency generated from 3.0 T, and 298 MHz RF Pulse frequency generated from 7.0 T send a frequency and experiment was performed using dental implant using the XFDTD program, we measured the SAR and body temperature changes around the head. The SAR value showed up to about 5800 times the difference at the RF Pulse frequency of 256 MHz, when with dental implant than without dental implant and as the frequency increased, the use of the dental implant increased difference in the SAR value. The change of the temperature of the head showed a temperature rise nearly 2 to 4 times when with dental implant than without dental implant. As the RF Pulse frequency increase, the SAR value increase, but the change of the temperature of the head decrease. Because of as the frequency increase, wavelength is smaller and the more the amount absorbed by the surface of the human. Physiological and biochemical studies of the human body ar necessary through studies of the presence of dental implant and the cause of reaction caused by change in the RF Pulse frequency.

Effects of Dohongsamul-Tang on the Gene Expression of Photothrombotic Ischemia Mouse Model (도홍사물탕(桃紅四物湯)이 광화학적 뇌경색 마우스의 유전자 발현에 미치는 영향)

  • Cho, Kwon-Il;Kim, Hye-Yoon;Ko, Seok-Jae;Lee, Seong-Geun;Shin, Sun-Ho;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.645-661
    • /
    • 2009
  • The water extract of Dohongsamul-Tang(DHSMT) has been traditionally used to stroke and brain injuries in Oriental Medicine. The present study was designed to investigate the effects of DHSMT on the gene expression profile of cerebral infarction by cDNA microarray in photothrombotic ischemia mouse model. Photothrombotic ischemia was induced in stereotactically held male BALB/c mice using rose bengal and cold light. MRI was performed 24 hours after inducing photothrombosis using 1.5 T MRI and 47 mm surface coil to obtain T2-weighted, and contrast-enhanced images. After MRI test, animal was sacrificed and the brain sections were stained for hematoxylin and eosin and immunohistochemistry. MRI and histological analysis revealed that lesion of thrombotic ischemia was well induced in the cortex with the evidence of biological courses of infarction. The target area of thrombotic infarction was 1 mm anterior to bregma and 3 mm lateral to midline with 2 mm in diameter, which were decreased by administration of DHSMT. To assess gene expression pattern of cerebral infarction, mRNA was isolated and reacted with microarray chip(Agilant's DNA Microarray 44K). Scatter and MA plot analysis were performed to clustering of each functional genes. M value [M=log2(R/G), A={log2(R ${\times}$ G)}/2] was between -0.5 and +0.5 with 40% difference. After pretreatment with DHSMT, the expression levels of mRNA of many genes involved in various signaling pathway such as apoptosis, cell cycle, cell proliferation, response to oxidative stress, immune response, angiogenesis, and inflammatory cytokine were markedly inhibited in photothrombotic ischemia lesion compared to the control group. These results suggest that DHSMT prevent ischemic death of brain on photothrombotic ischemia model of mice through modulation of gene expression at the transcriptional level.

Bilateral Striopallidodentate Salcinosis on CT and MRI : Case Report (양측성 선조-담창-치상액 석회증의 전산화단층촬영과 자기공명영상 소견 : 증례보고)

  • Lee Jong Deok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.621-625
    • /
    • 2004
  • Bilateral striopallidodentate calcinosis, popularly referred to as Fahr's disease, is a disorder radiologically characterized by bilateral calcifications of the basal ganglia, thalami, dentate nuclei of the cerebellum, and the white matter of the cerebral hemisphere without serum calcium-phosphorus metabolism and related endocrinologic abnormalities. Intracranial calcifications are easily visible as high-density on CT. On magnetic resonance images, the calcifications exhibit different signal intensities. The differences in signal intensity are thought to be related to the stage of the disease, differences in calcium metabolism, and the volume of the calcium deposit. Based on literature review, I report the case of a 63 year man with bilateral symmetrical calcification in the basal ganglia, dentate nuclei of the cerebellum, and the white matter of the cerebral hemisphere who present a 5 year history of progressive dysarthria associated with left thalamic infarction.