• Title/Summary/Keyword: Physiological Functions

Search Result 714, Processing Time 0.033 seconds

Functional Properties of Peptides in Mixed Whey and Soybean Extracts after Fermentation by Lactic Acid Bacteria

  • Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ha-Neul Kim;Ji-Won Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • In this study, we explored the synergistic effects of whey protein concentrate (WPC) and soybean protein components after fermentation with lactic acid bacteria isolated from kimchi, and identified several peptides with desirable physiological functions, proteolysis, and immune effects. Antioxidant activity was determined using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid, 1,1-diphenyl-2-picrylhydrazyl, ferric-reducing antioxidant power, and hydroxyl radical scavenging assays, followed by cross-validation of the four antioxidant activities. These assays revealed that samples with a 8:2 and 9:1 whey to soy ratio possessed higher antioxidant activity than the control samples. Antibacterial potency testing revealed high antibacterial activity in the 9:1 and 8:2 samples. Cytotoxicity testing of samples using 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide revealed that only the 10:0, 1:9, and 0:10 samples had <80% viable cells, indicating no significant cytotoxicity. Nitric oxide (NO) assays revealed that NO expression was reduced in 8:2, 5:5, and 0:10 protein ratio fermentations, indicating low inflammatory reaction stimulatory potential. Cytokine expression was confirmed using an enzyme-linked immunosorbent assay kit. The 8:2 sample had the lowest inflammatory cytokine (interleukin [IL]-1α, IL-6, and tumor necrosis factor-α) levels compared with the lipopolysaccharide-treated group. Amino acid profiling of the 8:2 sample identified 17 amino acids. These results suggest that inoculating and fermenting Lactobacillus plantarum DK203 and Lactobacillus paracasei DK209 with an 8:2 mixture of WPC and soybean protein releases bioactive peptides with excellent anti-inflammatory and antioxidant properties, making them suitable for functional food development.

Cisd2 deficiency impairs neutrophil function by regulating calcium homeostasis via Calnexin and SERCA

  • Un Yung Choi;Youn Jung Choi;Shin-Ae Lee;Ji-Seung Yoo
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.256-261
    • /
    • 2024
  • In the context of aging, the susceptibility to infectious diseases increases, leading to heightened morbidity and mortality. This phenomenon, termed immunosenescence, is characterized by dysregulation in the aging immune system, including abnormal alterations in lymphocyte composition, elevated basal inflammation, and the accumulation of senescent T cells. Such changes contribute to increased autoimmune diseases, enhanced infection severity, and reduced responsiveness to vaccines. Utilizing aging animal models becomes imperative for a comprehensive understanding of immunosenescence, given the complexity of aging as a physiological process in living organisms. Our investigation focuses on Cisd2, a causative gene for Wolfram syndrome, to elucidate on immunosenescence. Cisd2 knockout (KO) mice, serving as a model for premature aging, exhibit a shortened lifespan with early onset of aging-related features, such as decreased bone density, hair loss, depigmentation, and optic nerve degeneration. Intriguingly, we found that the Cisd2 KO mice present a higher number of neutrophils in the blood; however, isolated neutrophils from these mice display functional defects. Through mass spectrometry analysis, we identified an interaction between Cisd2 and Calnexin, a protein known for its role in protein quality control. Beyond this function, Calnexin also regulates calcium homeostasis through interaction with sarcoendoplasmic reticulum calcium transport ATPase (SERCA). Our study proposes that Cisd2 modulates calcium homeostasis via its interaction with Calnexin and SERCA, consequently influencing neutrophil functions.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

Correlation between sodium intake and obesity with related factors among Koreans: a cross-sectional study on dietary intake and eating habits

  • Ji-Sook Park;Hina Akbar;Jung-Eun Yim
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.65-74
    • /
    • 2024
  • Purpose: Sodium is essentially required for homeostasis and physiological functions, but excessive sodium consumption increases the risk of obesity and other chronic disorders. Korean studies on the sodium-obesity relationship are limited, and thus, this study was undertaken to determine the nature of the relationship between sodium intake and obesity in Korean adults. Methods: Forty-two participants were divided into 2 groups according to body mass index (BMI, non-obese BMI < 25 kg/m2, obese BMI ≥ 25 kg/m2). Dietary intakes and eating habits were analyzed using 3-day food records and a food frequency questionnaire. Anthropometric data were obtained from bioimpedance results, and fasting glucose and lipid levels were measured. Results: Mean weight, BMI, waist and hip circumferences, and body fat mass were greater in the obese group than in the non-obese group for men and women. Skeletal muscle mass and body fat mass were higher in obese women than in non-obese women. Biochemical data were no different in these two subgroups except triglycerides (TGs), which were higher in obese women. Nutrient intakes were not significantly different in obese and non-obese groups. However, obese men consumed excessive sodium, while obese women consumed slightly more than non-obese women. Obese men preferred salty foods and tended to overeat. Positive correlations were found between sodium intake and weight in men and percent body fat mass (PBFM) in women. Correlation analysis (adjusted for energy intake) of the relation between sodium intake and obesity-related factors showed sodium intake was positively correlated with PBFM and TG in women. Conclusion: This anthropometric and biochemical data analysis emphasizes the need for awareness and interventions to mitigate the health risks of elevated sodium consumption. Our findings should aid future studies on the relationship between sodium and obesity and contribute to preventing and managing this metabolic condition.

Establishing porcine jejunum-derived intestinal organoids to study the function of intestinal epithelium as an alternative for animal testing

  • Bo Ram Lee;Sun A Ock;Mi Ryung Park;Min Gook Lee;Sung June Byun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.2-11
    • /
    • 2024
  • Background: The small intestine plays a crucial role in animals in maintaining homeostasis as well as a series of physiological events such as nutrient uptake and immune function to improve productivity. Research on intestinal organoids has recently garnered interest, aiming to study various functions of the intestinal epithelium as a potential alternative to an in vivo system. These technologies have created new possibilities and opportunities for substituting animals for testing with an in vitro model. Methods: Here, we report the establishment and characterisation of intestinal organoids derived from jejunum tissues of adult pigs. Intestinal crypts, including intestinal stem cells from the jejunum tissue of adult pigs (10 months old), were sequentially isolated and cultivated over several passages without losing their proliferation and differentiation using the scaffold-based and three-dimensional method, which indicated the recapitulating capacity. Results: Porcine jejunum-derived intestinal organoids showed the specific expression of several genes related to intestinal stem cells and the epithelium. Furthermore, they showed high permeability when exposed to FITC-dextran 4 kDa, representing a barrier function similar to that of in vivo tissues. Collectively, these results demonstrate the efficient cultivation and characteristics of porcine jejunum-derived intestinal organoids. Conclusions: In this study, using a 3D culture system, we successfully established porcine jejunum-derived intestinal organoids. They show potential for various applications, such as for nutrient absorption as an in vitro model of the intestinal epithelium fused with organ-on-a-chip technology to improve productivity in animal biotechnology in future studies.

Glucocorticoids improve sperm performance in physiological and pathological conditions: their role in sperm fight/flight response

  • Vittoria Rago;Adele Vivacqua;Saveria Aquila
    • Anatomy and Cell Biology
    • /
    • v.57 no.1
    • /
    • pp.119-128
    • /
    • 2024
  • Glucocorticoids play a physiologic role in the adult male reproductive functions, modulating gonadal steroid synthesis and spermatogenesis, through the glucocorticoid receptor (GR). The expression of GR has been described in several key testicular cell types, including somatic cells and early germ cell populations. Nothing is known on GR in human spermatozoa. Herein, we explored the GR expression and its possible role in normal and testicular varicocele semen samples from volunteer donors. After semen parameter evaluation by macro- and microscopic analysis, samples were centrifuged; then spermatozoa and culture media were recovered for further investigations. By western blotting and immunofluorescence analyses we evidenced for the first time in spermatozoa the presence of GR-D3 isoform which was reduced in sperm from varicocele patients. By treating sperm with the synthetic glucocorticoid dexamethasone (DEXA), we found that survival, motility, capacitation, and acrosome reaction were increased in both healthy and varicocele samples. GR involvement in mediating DEXA effects, was confirmed by using the GR inhibitor mifepristone (M2F). Worthy, we also discovered that sperm secretes different cortisol amounts depending on its physio-pathological status, suggesting a defence mechanism to escape the immune system attach in the female genital tract thus maintaining the immune-privilege as in the testis. Collectively, our data suggests a role for glucocorticoids in determining semen quality and function, as well as in participating on sperm immune defensive mechanisms. The novelty of this study may be beneficial and needs to take into account in artificial insemination/drug discovery aimed to enhancing sperm quality.

A Study on the Qiu Zheng Lu (求正錄) of Zhang J ie Bin (張介賓) (장개빈(張介賓)의 <구정록(求正錄)>에 관한 연구(硏究))

  • Park, Hyuk-Kyu;Maeng, Woong Jea
    • The Journal of Korean Medical History
    • /
    • v.18 no.2
    • /
    • pp.137-187
    • /
    • 2005
  • This thesis study of the medical concept Qiu Zheng Lu (求正錄) is discussed in the Lei Jing Fu Yi (類經附翼), a book authored by Zhang Jie Bin (張介賓) a medical doctor during the Chinese Ming (明) dynasty (1368-1683). The meaning of Qiu Zheng Lu (求正錄) is "searching for the rightness." In his book Zhang Jie Bin (張介賓) intended to clarify Qiu Zheng Lu (求正錄) by delineating the concept into four categories. These are: Sanjiao Baoluo Mingmen Bian (三焦包絡命門 辨) the theory of the triple warmer, the Pericardium, the Gate of Life ; Da Bao Lun (大寶論) the theory of the great treasure of the human body; Zhen Yin Lun (眞陰論) the theory of true-yin fluid; and Shi Er Zang Mai Hou Bu Wei Lun (十二臟脈候部位論) the theory of the part of the pulse and its condition in regards to the twelve viscera. Sanjiao Baoluo Mingmen Bian (三焦包絡命門辨), the theory of the triple warmer, the Pericardium, the Gate of Life. The triple warmer (三焦: Sanjiao) is composed of three parts: the upper, middle, and lower. This concept is also connected with the functions and roles of the vital organs. The upper burner is related to the heart and lungs. The middle burner is related to the liver and spleen. Whereas, the lower burner is related to the kidneys. Bao-Luo (包絡) is the Pericardium, the envelope of the heart, serving as the protector of the heart. Ming-Men (命門) is the Gate of Life, reffering to the vitals of life. It functions as kidney-yang which is considered as the origin of yang-energy of the human body, and serves partly as the function of cortico-adrenal gland in modern medicine. Zhang Jie Bin (張介賓) discussed the Da Bao Lun (大寶論) as the most important function in the human body because the Da Bao (大寶/great treasure) is the true-yang (眞陽) which is the affective force for physiological functions, and as the source of energy for life activities. Moreover, true-yang (眞陽) functions both as a heater and thermometer that warms the human body and indicates vitality by levels of body warmth respectively. The Zhen Yin Lun (眞陰論) theory states that if true-yang (眞陽) is energy, then true-yin (眞陰) is the source of energy. This can be likened to a tree with roots which absorbs nutrients from the ground (source), and spreads the nutrients (energy) through its branches. Thus, true-yin (眞陰) is the root cause for later functional activities of true-yang (眞陽). In Shi Er Zang Mai Hou Bu Wei Lun (十二臟脈候部位論) the theory of the pulse (脈 /Mai) and its condition in regards to the twelve viscera, Zhang Jie Bin (張介賓) insisted that when a diagnoses by the pulse is made the five vital organs and the six viscera (五臟六腑) of a human body should be harmoniously arranged in accordance with its respective part of the pulse. Furthermore, Zhang Jie Bin (張介賓) supported his theory with evidence from earlier Chinese medical doctors. And, by stating that human beings must cultivate and preserve their true-yin (眞陰) and true-yang (眞陽) energies he therefore created four new prescriptions called: Zuoguiyin (左歸飮), Youguiyin (右歸飮), Zuoguiwan (左 歸丸), Youguiwan (右歸丸). To further clarify his theory Zhang Jie Bin (張介賓) considered that the function of true-yang (眞陽) and true-yin (眞陰) is expressed by Ming-Men (命門). This theory is that for humans to be spiritually and physically healthy they must live in accord with natural law. Also, within the framework of natural law, astronomical and geographical factors must be considered for complete, holistic, health. Thus, Ming-Men is the basis for healthy living in the modern world.

  • PDF

Changes of Heart Rate During Marathon Running (장거리 (마라톤)선수에서의 전 경기중 심박동수의 변화)

  • Kim, In-Kyo;Lee, Jung-Woo;Hah, Jong-Sik;Ryu, Yun-Hee;Choi, Jung-Ok;Kim, Ki-Ho
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.1-12
    • /
    • 1979
  • To evaluate the present status of physical fittness of Korean long distance runners, body fat, pulmonary functions, maximal oxygen intake and oxygen debt were measured in 5 elite marathoners (A group), 6 college student runners (B group) and 3 middle school student runners (C group). After laboratory tests, full course marathon running was performed in 2 elite marathoners during which their heart rates were monitored continuously. The results are summerized as follows: 1) Total body fat in all three groups are in the range of 13-15% of their body weight. 2) In all three groups, average values of various pulmonary functions were within the normal limits, but those of tidal volume were higher and respiratory rate were lower in comparison to normal values. These phenomena may represent respiratory adaptations against training. The average resting oxygen consumptions in A,B and C were $322{\pm}23$, $278{\pm}14$ and $287{\pm}16$m1/min, respectively. 3) In all three groups, resting blood pressures were in the normal range, but the resting heart rate was slightly lower in groups A $(56{\pm}3\;beats/min)$ and B $(64{\pm}2\;beats/min)$ and higher in group C $(82{\pm}9\;beats/min)$ in comparison to normal values. These changes in cardiovascular functions in marathoners may also represent adaptive phenomena. 4) During treadmill running the minute ventilation and oxygen consumption of the runners increased lineally with work load in all three groups. When the oxygen consumption was related to heart rate, it appeared to be a exponential function of the heart rate in all three groups. 5) The average maximal heart rates during maximal work were $196{\pm}3$, $191{\pm}3$ and $196{\pm}5\;beats/min$ for groups A,B and C, respectively. Maximal oxygen intakes were $84.2{\pm}3.3\;ml/min/kg$ in group A, $65.2{\pm}1.1\;ml/min/kg$ in group B and $58.7{\pm}0.4\;ml/min/kg$ in group C. 6) In all three groups, oxygen debts and the rates of recovery of heart rate after treadmill running were lower than those of long ditsance runners reported previously. 7) The 40 km running time in 2 elite marathoners was recorded to be $2^{\circ}42'25'$, and their mean speed was 243 m/min (ranged 218 to 274 m/min). The heart rate appeared to increase lineally with running speed, and the total energy expenditure during 40 km running was approximately 1360.2 Calories. From these it can be speculated that if their heart rates were maintained at 166 beats/min during the full course of marathon running, their records would be arround $2^{\circ}15'$. Based on these results, we may suspect that a successful long distance running is, in part, dependent on the economical utilization of one's aerobic capacity.

  • PDF

Physiological Characteristics of Melon Plants Showing Leaf Yellowing Symptoms Caused by CABYV Infection (CABYV 감염 멜론의 황화증상에 따른 생리적인 특성)

  • Lee, Hee Ju;Kim, Mi-Kyeong;Lee, Sang Gyu;Choi, Chang Sun;Choi, Hong-Soo;Kwak, Hae Ryun;Choi, Gug Seoun;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • Melon leaves showing yellowing symptoms were analyzed using electron microscopy and RT-PCR for major cucurbit-infecting-viruses (CMV, MNSV, CGMMV, SqMV, WMV, KGMMV, PRSV and ZYMV) reported in Korea, but these viruses were not detected. As the result of further analysis by next-generation sequencing (NGS), the virus was identified as Cucurbit aphid-borne yellows virus (CABYV), and then confirmed by RT-PCR using CABYV-specific primers. When photosynthetic capacity was measured based on chlorophyll fluorescence yield (ChlFY), the leaves of the diseased plants showed $4.09{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, which was one-third of the readings observed for unaffected normal plants ($12.36{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). The root functions of plants affected by leaf yellowing symptoms (LYS) was $0.28mg{\cdot}g^{-1}$, about half that measured for the normal unaffected plants ($0.48mg{\cdot}g^{-1}$). Cytological observations revealed that there were no morphological differences in the palisade parenchyma and mesophyll spongy cells of the leaves between the diseased and the normal plants. However, the same leaf cells of the affected plants contained more starch granules compared to those of the normal, unaffected plants. We conclude that the LYS of muskmelon is not merely a physiological disorder but a viral disease caused by CABYV and spread by aphids.

Effects of Organic Ca Supplements on Ca Bioavailability and Physiological Functions in Ovariectomized Osteoporotic Model Rats (난소절제 골다공증 흰쥐모델에서 유기태 칼슘보충제가 칼슘 이용성과 생리기능에 미치는 영향)

  • Cho, Su-Jung;Park, Mi-Na;Kim, Hee-Kyong;Kim, Jae-Hong;Kim, Min-Ho;Kim, Wan-Sik;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.665-672
    • /
    • 2011
  • We evaluated the effects of organic Ca supplements chelated with milk protein (CaMP) in ovariectomized osteoporotic rats. Eight week-old Sprague-Dawley female rats were ovariectomized and fed a low $CaCO_3$ diet (0.1%) for 4 weeks to create an osteoporotic model. At that point, L4-$CaCO_3$ rats were sacrificed and the rest of the rats were divided into 4 groups, each of which was fed an experimental diet for 4 weeks: low-$CaCO_3$ (0.1%; L8-$CaCO_3$) and CaMP at 3 Ca levels: low (0.1%; L8-CaMP), normal (0.5%; N8-CaMP), and high (1.5%; H8-CaMP). Daily weight gain, serum ALP, weight and breaking force of femurs, Ca content of the lumbar, and Ca absorption were measured. Daily weight gain increased in the N8-CaMP and H8-CaMP groups compared to the low Ca groups. The ALP activity in the CaMP-fed rats was significantly lower than in the $CaCO_3$-fed rats. Both breaking force and femur weight were higher in the N8-CaMP and H8-CaMP groups compared to the L8-$CaCO_3$ group. Ca content of the lumbar increased dose-dependently with Ca intake levels of CaMP. Ca absorption rates of the CaMP-fed rats increased more than that of the rats fed low Ca levels of $CaCO_3$. These results demonstrate that the CaMP supplement had positive effects on bone metabolism and Ca bioavailability in ovariectomized osteoporotic rats. Therefore, CaMP may be recommended as a useful Ca supplement to prevent bone loss in osteoporosis.