DOI QR코드

DOI QR Code

Establishing porcine jejunum-derived intestinal organoids to study the function of intestinal epithelium as an alternative for animal testing

  • Bo Ram Lee (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Sun A Ock (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Mi Ryung Park (Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration) ;
  • Min Gook Lee (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Sung June Byun (Poultry Research Institute, National Institute of Animal Science, Rural Development Administration)
  • Received : 2024.02.22
  • Accepted : 2024.03.12
  • Published : 2024.03.31

Abstract

Background: The small intestine plays a crucial role in animals in maintaining homeostasis as well as a series of physiological events such as nutrient uptake and immune function to improve productivity. Research on intestinal organoids has recently garnered interest, aiming to study various functions of the intestinal epithelium as a potential alternative to an in vivo system. These technologies have created new possibilities and opportunities for substituting animals for testing with an in vitro model. Methods: Here, we report the establishment and characterisation of intestinal organoids derived from jejunum tissues of adult pigs. Intestinal crypts, including intestinal stem cells from the jejunum tissue of adult pigs (10 months old), were sequentially isolated and cultivated over several passages without losing their proliferation and differentiation using the scaffold-based and three-dimensional method, which indicated the recapitulating capacity. Results: Porcine jejunum-derived intestinal organoids showed the specific expression of several genes related to intestinal stem cells and the epithelium. Furthermore, they showed high permeability when exposed to FITC-dextran 4 kDa, representing a barrier function similar to that of in vivo tissues. Collectively, these results demonstrate the efficient cultivation and characteristics of porcine jejunum-derived intestinal organoids. Conclusions: In this study, using a 3D culture system, we successfully established porcine jejunum-derived intestinal organoids. They show potential for various applications, such as for nutrient absorption as an in vitro model of the intestinal epithelium fused with organ-on-a-chip technology to improve productivity in animal biotechnology in future studies.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01671901)" Rural Development Administration (RDA), Republic of Korea.

References

  1. Berschneider HM. 1989. Development of normal cultured small intestinal epithelial cell lines which transport Na and Cl. Gastroenterology 96(Suppl Pt 2):A41.
  2. Brosnahan AJ and Brown DR. 2012. Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Vet. Microbiol. 156:229-237. https://doi.org/10.1016/j.vetmic.2011.10.017
  3. Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q, Wannemuehler M, Ellinwood NM, Snella E, Martin M, Skala M, Meyerholz D, Estes M, Fernandez-Zapico ME, Jergens AE, Mochel JP, Allenspach K. 2019. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol. 17:33.
  4. Hamilton CA, Young R, Jayaraman S, Sehgal A, Paxton E, Thomson S, Katzer F, Hope J, Innes E, Morrison LJ, Mabbott NA. 2018. Development of in vitro enteroids derived from bovine small intestinal crypts. Vet. Res. 49:54.
  5. Haq I, Yang H, Ock SA, Wi HY, Park KW, Lee PY, Choi HW, Lee BR. 2021. Recent progress and future perspectives on intestinal organoids in livestock. J. Agric. Life Sci. 55:83-90.
  6. Joo SS, Gu BH, Park YJ, Rim CY, Kim MJ, Kim SH, Cho JH, Kim HB, Kim M. 2022. Porcine intestinal apical-out organoid model for gut function study. Animals (Basel) 12:372.
  7. Kang TH, Shin S, Park J, Lee BR, Lee SI. 2023. Pyroptosismediated damage mechanism by deoxynivalenol in porcine small intestinal epithelial cells. Toxins (Basel) 15:300.
  8. Kawasaki M, Goyama T, Tachibana Y, Nagao I, Ambrosini YM. 2022. Farm and companion animal organoid models in translational research: a powerful tool to bridge the gap between mice and humans. Front. Med. Technol. 4:895379.
  9. Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12:357-360. https://doi.org/10.1038/nmeth.3317
  10. Lee BR, Kim H, Park TS, Moon S, Cho S, Park T, Lim JM, Han JY. 2007. A set of stage-specific gene transcripts identified in EK stage X and HH stage 3 chick embryos. BMC Dev. Biol. 7:60.
  11. Lee BR, Rengaraj D, Choi HJ, Han JY. 2020. A novel F-box domain containing cyclin F like gene is required for maintaining the genome stability and survival of chicken primordial germ cells. FASEB J. 34:1001-1017. https://doi.org/10.1096/fj.201901294R
  12. Lee BR and Yang H. 2023. In vitro culture of chicken embryonic stem cell-like cells. J. Anim. Reprod. Biotechnol. 38:26-31.
  13. Lee BR, Yang H, Lee SI, Haq I, Ock SA, Wi H, Lee HC, Lee P, Yoo JG. 2021. Robust three-dimensional (3D) expansion of bovine intestinal organoids: an in vitro model as a potential alternative to an in vivo system. Animals (Basel) 11:2115.
  14. Livak KJ and Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  15. Olayanju A, Jones L, Greco K, Goldring CE, Ansari T. 2019. Application of porcine gastrointestinal organoid units as a potential in vitro tool for drug discovery and development. J. Appl. Toxicol. 39:4-15. https://doi.org/10.1002/jat.3641
  16. Park KW, Yang H, Lee MG, Ock SA, Wi H, Lee P, Hwang IS, Yoo JG, Park CK, Lee BR. 2022. Establishment of intestinal organoids from small intestine of growing cattle (12 months old). J. Anim. Sci. Technol. 64:1105-1116. https://doi.org/10.5187/jast.2022.e70
  17. Park KW, Yang H, Wi H, Ock SA, Lee P, Hwang IS, Lee BR. 2022. Effect of Wnt signaling pathway activation on the efficient generation of bovine intestinal organoids. J. Anim. Reprod. Biotechnol. 37:136-143. https://doi.org/10.12750/JARB.37.2.136
  18. Park MR, Ahn JS, Lee MG, Lee BR, Ock SA, Byun SJ, Hwang IS. 2023. Characterization of enlarged tongues in cloned piglets. Curr. Issues Mol. Biol. 45:9103-9116. https://doi.org/10.3390/cimb45110571
  19. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11:1650-1667. https://doi.org/10.1038/nprot.2016.095
  20. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33:290-295. https://doi.org/10.1038/nbt.3122
  21. Pierzchalska M, Panek M, Czyrnek M, Gielicz A, Mickowska B, Grabacka M. 2017. Probiotic Lactobacillus acidophilus bacteria or synthetic TLR2 agonist boost the growth of chicken embryo intestinal organoids in cultures comprising epithelial cells and myofibroblasts. Comp. Immunol. Microbiol. Infect. Dis. 53:7-18. https://doi.org/10.1016/j.cimid.2017.06.002
  22. Powell RH and Behnke MS. 2017. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biol. Open 6:698-705.
  23. Rallabandi HR, Yang H, Oh KB, Lee HC, Byun SJ, Lee BR. 2020. Evaluation of intestinal epithelial barrier function in inflammatory bowel diseases using murine intestinal organoids. Tissue Eng. Regen. Med. 17:641-650. https://doi.org/10.1007/s13770-020-00278-0
  24. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140. https://doi.org/10.1093/bioinformatics/btp616
  25. Rozman J, Krajnc M, Ziherl P. 2020. Collective cell mechanics of epithelial shells with organoid-like morphologies. Nat. Commun. 11:3805.
  26. Stewart AS, Freund JM, Gonzalez LM. 2018. Advanced three-dimensional culture of equine intestinal epithelial stem cells. Equine Vet. J. 50:241-248. https://doi.org/10.1111/evj.12734