• 제목/요약/키워드: Physico-mechanical

검색결과 72건 처리시간 0.023초

Microwave Radiation을 이용하여 제조된 고분자 함침 콘크리트의 물리적 특성 (Physical Properties of Polymer Impregnated Concrete Prepared using Microwave Radiation)

  • 구두현;박정순;박헌영;허명준;이원묵
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.345-350
    • /
    • 2008
  • 고분자함침콘크리트(PIC)는 물리화학적 물성뿐만 아니라 기계적 강도가 우수한 재료로서 성형된 일반 콘크리트를 변조하여 제조한다. PIC 제조공정은 성형된 공시체의 건조, 단량체의 함침, 중합공정으로 구성된다. PIC 제조공정 중 고분자 중합공정은 지금까지 주로 열 및 수중중합방법을 사용하여 콘크리트 내부의 온도구배가 크고 라디칼 생성이 억제되어 불균일한 중합을 초래하였다. 본 연구에서는 마이크로파를 이용한 중합 반응기를 제작하여 스티렌/메틸메타아크릴레이트(MMA) 1 : 1의 혼합물을 단량체로 사용한 PIC 제조의 중합공정에 사용하였다. 그 결과 열중합보다 매우 균일한 PIC를 제조할 수 있었으며, 30% 이상 중합도가 증가하였고, 공시체보다 기계적 압축강도는 600% ($800{\sim}1200kg_f/cm^2$)까지 증가하였으며, 내산성은 20% 이상 증가하였다. 또한 개시제는 1% 이하로 사용할 수 있었고 중합의 최적 조건은 400 W, 2450 MHz의 radiation 조사로 최적 온도는 $120^{\circ}C$였다.

Mechanical properties of expanded polystyrene beads stabilized lightweight soil

  • Li, Mingdong;Wen, Kejun;Li, Lin;Tian, Anguo
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.459-474
    • /
    • 2017
  • To investigate the mechanical properties of Expanded Polystyrene (EPS) Beads Stabilized Lightweight Soil (EBSLS), Laboratory studies were conducted. Totally 20 sets of specimens according to the complete test design were prepared and tested with unconfined compressive test and consolidated drained triaxial test. Results showed that dry density of EBSLS ($0.67-1.62g/cm^3$) decreases dramatically with the increase of EPS beads volumetric content, while increase slightly with the increase of cement content. Unconfined compressive strength (10-2580 kPa) increases dramatically in parabolic relationship with the increase of cement content, while decreases with the increase of EPS beads volumetric content in hyperbolic relationship. Cohesion (31.1-257.5 kPa) increases with the increase of cement content because it is mainly caused by the bonding function of hydration products of cement. The more EPS beads volumetric content is, the less dramatically the increase is, which is a result of the cohesion between hydration products of cement and EPS beads is less than that between hydration products of cement and sand particles. Friction angle ($14.92-47.42^{\circ}$) decreases with the increase of EPS beads volumetric content, which is caused by the smoother surfaces of EPS beads than sand grains. The stress strain curves of EBSLS tend to be more softening with the increase of EPS beads content or the decrease of cement content. The shear contraction of EBSLS increases with the increase of $c_e$ or the decrease of $c_c$. The results provided quantitative relationships between physico-mechanical properties of EBSLS and material proportion, and design process for engineering application of EBSLS.

원료육 종류에 따라 알칼리 조절법으로 제조한 계육 수리미의 수율, 이화학적 및 관능적 특성 비교 (Comparison of Yield, Physico-chemical and Sensory Characteristics for Chicken Surimi Manufactured by Alkaline Adjustment with Different Raw Materials)

  • 진상근;김일석;김동훈;정기종;최영준
    • 한국축산식품학회지
    • /
    • 제26권4호
    • /
    • pp.431-440
    • /
    • 2006
  • 원료육 종류[SF사의 노계육을 이용한 닭가슴살(T1) 및 닭다리살(T2)과 SF사의 MDCM(mechanical deboned chicken meat, T3) 및 JY사의 MDCM]에 따라 pH 11 알칼리 조절법으로 제조한 계육 수리미의 수율, 이화학적 및 관능적 특성을 비교 분석한 결과는 다음과 같다 수율은 T1>T2>T3>T4순이었으며(p<0.05), T1이 수율, 이화학적 및 관능적 특성의 종합적인 면에서 다른 세 처리구들에 비하여 가장 양호하였다. 특히 육색 $L^*$값과 W값, 전단가, 조직감의 모든 항목, 접기 시험 결과, 파괴 강도, 겔 강도, 파괴 강도${\times}$변형 값, 관능 검사의 맛, 육색 및 종합적인 기호도가 높고, 육색 $a^*$값, 가열감량, 콜라겐 및 Mb 함량이 낮아(p<0.05) 양호하였다. 수리미의 품질측면에서 닭가슴살 원료를 대체할 수 있는 것은 T2와 T3보다 T4가 더 효과적이었으며(p<0.05), 그 특성으로는 변형 값, 관능검사에서 향, 다즙성 및 연도는 높고, Met-Mb 함량이 낮은 장점이 있는 반면 경제적 면에서 수율이 낮았다(p<0.05). T2는 육색의 $b^*$값이 낮아 좋았으나, 조지방 함량, 가열 감량 및 Met-Mb이 많고, 조직감에서 표면경도, 경도, 검성 및 씹힘성과 접기 시험, 파괴 강도${\times}$변형 값 및 관능검사에서 향이 낮아(p<0.05) 품질에 나쁜 영향을 미쳤다. 한편 T3는 pH가 높아 좋았으나, 콜라겐과 수분 함량은 많고, 육색 $b^*$값이 높으며, 조단백질 함량, 접기 시험, 육색의 $L^*$값과 W값, 조직감의 응집성 및 관능검사의 연도가 낮아(p<0.05) 품질에 나쁜 영향을 미치는 결과였다. 접기 시험 결과와 다른 분석 항목간에 상관관계는 조단백질 함량, $L^*$, 전단가 및 응집성과 0.8 이상의 정의 상관관계를 나타내었고, 수분 함량과는 부의 상관관계를 나타내었다(p<0.05).

세공충진 음이온 전도성막의 제조 및 이를 이용한 고체알칼리 연료전지 성능 평가 (Pore-filling anion conducting membranes and their cell performance for a solid alkaline fuel cell)

  • 최영우;이미순;박구곤;임성대;양태현;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • AEM which were used for solid alkaline fuel cell(SAFC) were prepared by photo polymerization in method pore-filling with various quaternary ammonium cationic monomers and crosslinkers without an amination process. Their specific thermal and chemical properties were characterized through various analyses and the physico-chemical properties of the prepared electrolyte membranes such as swelling behavior, ion exchange capacity and ionic conductivity were also investigated in correlation with the electrolyte composition. The polymer electrolyte membranes prepared in this study have a very wide hydroxyl ion conductivity range of 0.01 - 0.45S/cm depending on the composition ratio of the electrolyte monomer and crosslinking agent used for polymerization. However, the hydroxyl ion conductivity of the membranes was relatively higher at the whole cases than those of commercial products such as A201 membrane of Tokuyama. These pore-filling membranes have also excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lowest electrolyte crossover through the membranes, and easier preparation process compared of traditional cast membranes. The prepared membranes were then applied to solid alkaline fuel cell and it was found comparable fuel cell performance to A201 membrane of Tokuyama.

  • PDF

Phosphoric Acid-doped SDF-F/poly(VI-co-MPS)/PTFE Membrane for a High Temperature Proton Exchange Membrane Fuel Cell

  • Lee, Jong-Won;Yi, Cheol-Woo;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1902-1906
    • /
    • 2011
  • Sulfonated poly(fluorinated arylene ether)s (SDF-F)/poly[(N-vinylimidazole)-co-(3-methacryloxypropyl-trimethoxysilane)] (poly(VI-co-MPS))/poly(tetrafluoroethylene) (PTFE) is prepared for a high temperature proton exchange membrane fuel cell (PEMFC). The reaction of the membrane with phosphoric acid forms silicate phosphor, as a chemically bound proton carrier, in the membrane. Thus-formed silicate phosphor, nitrogen in the imidazole ring, and physically bound phosphoric acid act as proton carriers in the membrane. The physico-chemical and electrochemical properties of the membrane are investigated by various analytical tools. The phosphoric acid uptake and proton conductivity of the SDF-F/poly(VI-co-MPS)/PTFE membrane are higher than those of SDF-F/PVI/PTFE. The power densities of cells with SDF-F/poly(VI-co-MPS)/PTFE membranes at 0.6 V are 286, 302, and 320 mW $cm^{-2}$ at 150, 170, and 190 $^{\circ}C$, respectively. Overall, the SDFF/poly(VI-co-MPS)/PTFE membrane is one of the candidates for anhydrous HT-PEMFCs with enhanced mechanical strength and improved cell performance.

Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding

  • Ouda, Ahmed S.
    • Advances in materials Research
    • /
    • 제3권2호
    • /
    • pp.61-75
    • /
    • 2014
  • This study aimed to investigate the suitability of some concrete components for producing "high-performance heavy density concrete" using different types of aggregates that could enhances the shielding efficiency against ${\gamma}$-rays. 15 mixes were prepared using barite, magnetite, goethite and serpentine aggregates along with 10% silica fume, 20% fly ash and 30% blast furnace slag to total OPC content for each mix. The mixes were subjected to compressive strength at 7, 28 and 90 days. In some mixes, compressive strengths were also tested up to 90 days upon replacing sand with the fine portions of magnetite, barite and goethite. The mixes containing magnetite along with 10% SF reaches the highest compressive strength exceeding over M60 requirement by 14% after 28 days. Whereas, the compressive strength of concrete containing barite was very close to M60 and exceeds upon continuing for 90 days. Also, the compressive strength of high-performance concrete incorporating magnetite fine aggregate was significantly higher than that containing sand by 23%. On the other hand, concrete made with magnetite fine aggregate had higher physico-mechanical properties than that containing barite and goethite. High-performance concrete incorporating magnetite fine aggregate enhances the shielding efficiency against ${\gamma}$-rays.

중금속 함유 폐기물의 재사용을 위한 환경적 평가에 관한 연구 (Study of the environmental assessment of heavy metals bearing slag utilization)

  • 배해룡;권영배
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.161-172
    • /
    • 1998
  • 철강재생 공장내의 전기 용융로에서 발생된 먼지중의 아연 성분을 재생하는 공정인 Waelz 공정에서는 매년 많은 양의 slag가 발생되어진다. 표면이 유리질성인 이 slag의 물리적 특성이 매우 우수하며, 건축 현장에서 골재(모래나 자갈)의 대체물질로 사용 가능한 만큼 높은 안정성을 지니고 있다. 유럽공동체 과 제인 본 연구는 여러 종류의 slag에 대한 용출특성, 물리-화학적 특성조사 및 광물학적 특성 연구에 주안점을 두었다. 용출실험으로는 법규실험과 slag의 재사용 시나리오와 관련된 여러 주요인자에 대한 영향(pH, 산환원 전위, 용매의 화학적특성, L/S비 등)에 대하여 조사되어졌다.

  • PDF

THERMO-SENSITIVITY OF N-VINYL PYRROLODONE-CO-2- HYDROXYETHYLMETHACRYLATE HYDROGELS

  • Irina Nam;Park, Jung-Ki;Lee, Seong-Nam;Sung, Shi-Joon;Min, Yong-Jin
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 SMICS 2004 International Symposium on Maritime and Communication Sciences
    • /
    • pp.9-15
    • /
    • 2004
  • The copolymerization of HEMA with different hydrophilic and hydrophobic co-monomers allows for the manipulation of their intrinsic properties. 2-Hydroxyethylmethacrylate (HEMA)-based hydrogels thus are of great interest due to their outstanding physico-mechanical properties and chemical stability. The idea to use HEMA in order to create thermo-sensitive polymers was based on our assumption that thermal-sensitivity comes from a suitable hydrophilic-hydrophobic balance of macromolecules. In this work we have chosen N-vinyl pyrrolidone as a hydrophilic co-monomer with the relatively hydrophobic HEMA due to its good polymerizing properties as well as its non-toxicity in a polymer state and deserved recognition as a biocompatible material. As a result, copolymerization of NVP and HEMA was successful in obtaining new types of thermo-sensitive polymers composed of hydrophilic and hydrophobic monomers.

  • PDF

Effects of additives and sintering temperature on phase evolution and properties of carbon-clay ceramic composites

  • Aramide, Fatai Olufemi;Adepoju, O.D.;Popoola, Abimbola Patricia
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.483-491
    • /
    • 2018
  • Effects of additives on phase development and physico-mechanical properties of mullite-carbon was investigated. Powdered clay, kaolinite and graphite of predetermined compositions were blended with additives using ball mill for 3 hrs at 60 rev/min. Samples were produced by uniaxial compression and sintered between $1400^{\circ}C$ and $1600^{\circ}C$ for one hr. They were characterized for various properties, developed phases and microstructural features. It was observed that the properties and phase developments in the samples were influenced by the additives. 10 wt % SiC served as nucleating point for SiC around $1400^{\circ}C$. 10wt % $TiO_2$ lead to development of 2.5 wt % TiC at $1500^{\circ}C$ which increased to 6.8 wt % at $1600^{\circ}C$. Ifon clay in the sample leads to development of anorthite and microcline in the samples. 10wt % $TiO_2$ is effective as anti-oxidant for graphite up to $1500^{\circ}C$. Base on strength and absorbed energy, sample C (with 10wt % $TiO_2$) sintered at $1500^{\circ}C$ is considered to be optimum.

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.