• Title/Summary/Keyword: Physical-desorption

Search Result 89, Processing Time 0.027 seconds

Structural Adjustment of In-Situ Surface-Modified Silica Matting Agent and Its Effect on Coating Performance

  • Xu, Qingna;Ji, Tongchao;Tian, Qingfeng;Su, Yuhang;Niu, Liyong;Li, Xiaohong;Zhang, Zhijun
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850137.1-1850137.9
    • /
    • 2018
  • A series of silica surface-capped with hexamethyldisilazane (denoted as $H-SiO_2$) were prepared by liquid-phase in-situ surface-modification method. The as-obtained $H-SiO_2$ was incorporated into acrylic amino (AA) baking paint to obtain AA/$H-SiO_2$ composite extinction paints and/or coatings. $N_2$ adsorption-desorption tests were conducted to determine the specific surface area as well as pore size and pore volume of $H-SiO_2$. Moreover, the effects of $H-SiO_2$ matting agents on the physical properties of AA paint as well as the gloss and transmittance of AA-based composite extinction coatings were investigated. Results show that $H-SiO_2$ matting agents possess a large specific surface area and pore volume than previously reported silica obtained by liquid-phase method. Besides, they have better dispersibility in AA baking paint than the unmodified silica. Particularly, $H-SiO_2$ with a silica particle size of $6.7{\mu}m$ and the dosage of 4% (mass fraction) provides an extinction rate of 95.2% and a transmittance of 79.3% for the AA-based composite extinction coating, showing advantages over OK520, a conventional silica matting agent. Along with the increase in the silica particle size, $H-SiO_2$ matting agents cause a certain degree of increase in the viscosity of AA paint as well as a noticeable decrease in the gloss of the AA-based composite extinction coating, but they have insignificant effects on the hardness and adhesion to substrate of the AA-based composite coatings. This means that $H-SiO_2$ matting agents could be well applicable to preparing low-viscosity and low-gloss AA-based matte coatings.

Synthesis of Dimer Acid Methyl Ester Using Base-treated Montmorillonite (염기 처리된 montmorillonite를 이용한 다이머산 메틸에스테르의 합성)

  • Yuk, Jeong Suk;Shin, Jihoon;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.132-138
    • /
    • 2019
  • In this study, we demonstrate the effects of the acidic properties of montmorillonite (MMT), which is commonly used as a catalyst, on the conversion and selectivity of the dimer acid methyl ester (DAME) synthesis. We synthesize DAME by the dimerization of conjugated linoleic acid methyl ester (CLAME) and oleic acid methyl ester using MMT KSF. Incidentally, trimer acid methyl ester was formed as a by-product during the DAME synthesis. There is a necessity to adequately adjust the strength and quantity of the acid site to control the selectivity of DAME. Therefore, we vary the pH of the MMT acid by using various metal hydroxides. The purpose of this study is to increase the yield of monocyclic dimer acid methyl ester, which is a substance with adequate physical properties for industrial applications (e.g., lubricant and adhesive, etc.), using a heterogeneous catalyst. We report the dimerization of fatty acid methyl ester by using base treated-KSF, and apply it to conjugated soybean oil methyl ester. Then, we transmute the acid site properties of KSF, such as pH of 5 wt.% slurry KSF and various alkali metals (Li, Na, K, Ca). Characterization of base treated-KSF using a pH meter, x-ray diffraction, inductively coupled plasma-atomic emission spectrometer, Brunauer-Emmett-Teller surface analysis, and temperature-programmed desorption. We conduct an analysis of CLAME and DAME using nuclear magnetic resonance spectroscopy, gas chromatography, and gel permeation chromatography. Through these experiments, we demonstrate the effects of the acidic properties of KSF on the conversion and selectivity of the DAME synthesis, and evaluate its industrial potential by application to waste vegetable oil.

Assessment of technological characteristics and microbiological quality of marinated turkey meat with the use of dairy products and lemon juice

  • Augustynska-Prejsnar, Anna;Hanus, Pawel;Sokolowicz, Zofia;Kacaniova, Miroslava
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2003-2011
    • /
    • 2021
  • Objective: The aim of this study was to evaluate the effect of marinating turkey meat with buttermilk and acid whey on the technological traits and microbiological quality of the product. Methods: Slices of turkey meat muscles were marinated for 12 hours in buttermilk (n = 30), acid whey (n = 30) and comparatively, in lemon juice (n = 30). The control group (n = 30) consisted of unmarinated slices of turkey breast muscles. Physical parameters (pH, water holding capacity, colour L*a*b*, shear force, weight loss) were assessed and quantitative and qualitative microbiological evaluation of raw and roasted products was performed. The microbiological parameters were determined as the total viable counts of mesophilic aerobic bacteria, of the Enterobacteriaceae family, and Pseudomonas spp. Bacterial identification was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Results: Marinating turkey meat in buttermilk and whey compared to marinating in lemon juice and the control sample resulted in a higher (p<0.05) degree of yellow color saturation (b*) and a reduction (p<0.05) in the number of mesophilic aerobic bacteria, Pseudomonas spp. and Enterobacteriaceae family as well as the number of identified mesophilic aerobic bacteria in both raw and roasted samples. The lowest (p<0.05) shear force values were found in products marinated in whey. Conclusion: The use of buttermilk and acid whey as a marinade for meat increases the microbiological safety of the product compared to marinating in lemon juice, while maintaining good technological features of the product.

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX

  • Giorgi, R.;Cechet, A.;Cognini, L.;Magni, A.;Pizzocri, D.;Zullo, G.;Schubert, A.;Van Uffelen, P.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2367-2375
    • /
    • 2022
  • In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.

Development of a Catalyst/Sorbent for Methane-Steam Reforming (메탄스팀개질반응용 촉매흡착제 개발에 관한 연구)

  • Cho, Yong-Hoon;Na, Jeong-Geol;Kim, Seong-Soo;Kim, Jin-Gul;Chung, Soo-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.307-313
    • /
    • 2006
  • In order to improve the efficiency of methane steam reforming process, a part of the system which produces hydrogen from heavy hydrocarbon resources such as coal, we combined metal catalyst with CaO sorbent and fabricated catalyst/sorbent. To increase the porosity and the compressive strength of sorbent, carbon black and ${\alpha}-alumina$ were mixed with CaO powder during preparation. The effects of sorbent composition on the physical properties were investigated by SEM, TGA, BET, XRD, abrasion strength measuring device and adsorption-desorption instrument. Sorbent with 5 wt% $Al_2O_3$ and 10 wt% carbon black showed the best physical features with $7.61kg_f$ strength and 47% $CO_2$ adsorption capability. Various metal catalysts such as Ni, Co and Fe were supported on the sorbent developed and 10 wt% Ni/sorbent was selected for methane steam reforming process based on the result of reaction experiment. The reaction system using the catalyst/sorbent showed better $H_2$ productivity compared to the detached system with catalyst and sorbent, indicating the effectiveness of the system developed in this study.

Effects of Change in Soil pH and Treatment of Gibbsite and Organic Matter on Sulfate Adsorption in Soils (Gibbsite와 유기물(有機物) 처리(處理) 및 pH변화(變化)가 토양(土壤)의 SO4= 흡착(吸着)에 미치는 영향(影響))

  • Yoon, Sun-Kang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.107-113
    • /
    • 1986
  • Laboratory experiments were carried out to investigate the effects of pH, gibbsite, and organic matter on sulfate adsorption by soils. Samples of five soil series (Songjeong, Gopyung, Yeasan, Gyorae, and Namwon), different in physical and chemical properties, were used in this study. The results obtained from sulfate adsorption experiment with sulfate solutions of the concentrations ranging from 50 to 400 ppm were as follows: 1. The adsorption phenomena for five soils were well described by the Freundlich adsorption isotherm over a given range of sulfate concentration. 2. The amounts of sulfate adsorbed and K value of Freundlich adsorption isotherm increased as the initial pH of the suspension decreased. 3. Although the changes in pH of the suspension on the adsorption equilibrium were hardly observed in the soil treated with gibbsite, the sulfate adsorption rates were increased with amount of gibbsite treated. 4. The effects of pH of the suspension on the adsorption rates in the soils treated with gibbsite were remarkable at the level of 0.1% but were little at the level of 1.5%. 5. The adsorption rates of soils, treated with organic matter and incubated for three weeks, were in the order: starch > straw > compost. At the relatively high levels (5 and 10%) of treatments, compost treatment resulted in the sulfate desorption phenomena.

  • PDF

Adsorption of CO2 on Monoethanol Amine-Impregnated ZSM5 and MS13X (Monoethanolamine을 함침한 ZSM5와 MS13X의 CO2 흡착특성 비교)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.325-331
    • /
    • 2017
  • Adsorption experiments of carbon dioxide were performed on ZSM5 and Molecular Sieve 13X (MS13X) impregnated with Monoethanol Amine (MEA). Adsorption efficiency of $CO_2$ was investigated in a U type packed column with GC/TCD. The adsorption capacities of adsorbents are estimated in the temperature range of $30-80^{\circ}C$. The modified adsorbents was characterized by BET surface area, $N_2$ adsorption/desorption isotherms, X-ray diffraction and FT-IR. Surface analysis results showed that the impregnation method did not affect the crystallinity of any adsorbents. BET surface area of the MS13X impregnated amine decreased to $19.945m^2/g$ from $718.335m^2/g$. These reults showed that amine molecules were filled with the pore volume in MS13X, as a results restricting access of nitrogen into the pores. The MEA modified MS13X showed improvement in $CO_2$ adsorption capacity over the ZSM5 impregnated with MEA. The MS13X-MEA showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. This results also showed that adsorption capacity of MS13X-MEA increases with the temperature range of $60-80^{\circ}C$ compared with pristine MS13X.

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.

Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites (제올라이트에 담지된 백금 촉매를 이용한 셀룰로우스의 폴리올로의 직접 전환)

  • You, Su Jin;Baek, In Gu;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.435-441
    • /
    • 2012
  • The direct conversion of cellulose into polyols in $H_2$ was examined over Pt catalysts supported on various zeolites, viz., mordenite, Y, ferrierite, and ${\beta}$. For comparison, Pt catalysts supported on ${\gamma}-Al_2O_3$, $SiO_2-Al_2O_3$, and $SiO_2$ were also tested. The physical properties of the catalysts were probed with $N_2$ physisorption. The surface acidity was measured with temperature programmed desorption of ammonia ($NH_3$-TPD). The Pt content was quantified with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The Pt dispersion was determined with CO chemisorptions and transmission electron microscopy (TEM). The conversion of cellulose appeared to be mainly dependent on the reaction temperature and reaction time because it depends on the concentration of $H^+$ ions reversibly formed in hot water. Pt/H-mordenite (20) showed the highest yield to polyols among the tested catalysts. Pt/H-zeolite was superior to Pt/Na-zeolite for this reaction. The polyol yield was dependent on the surface acid density and the external surface area.

Preparation of Mesoporous and Spherical-shaped Silica Particles by Spray Pyrolysis (분무열분해 공정을 이용한 메조기공을 가지는 실리카 구형입자의 제조)

  • Baek, Chul-Min;Jung, Kyeong Youl;Park, Kyun Young;Park, Seung Bin;Cho, Sung Baek
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.880-885
    • /
    • 2008
  • Spray pyrolysis was applied to prepare spherical silica particles with mesopores of a regular structure. The physical properties such as surface area, pore size, pore structure, particle size, and morphology were studied by BET, SEM, SAXS, and DLS analysis. At a fixed gas flow rate, the BET surface area changed from 200 to $1,290m^2/g$ as changing the CTAB/TEOS molar ratio from 0.05 to 0.3. At a fixed CTAB/TEOS ratio, the surface area of silica particles was varied from 1,062 to $1,305m^2/g$ with changing the gas flow rate from 10 to 40 l/min. The average pore size measured by BJH desorption was about $21{\sim}23{\AA}$ and not significantly influenced by the CTAB/TEOS ratio and the gas flow rate. Finally, the highest surface area which was $1,305m^2/g$ were obtained when the CTAB/TEOS ratio and the gas flow rate were 0.2 and 20 l/min, respectively. According to SAXS analysis, the prepared silica particles showed a strong peak at $2{\theta}=2.6^{\circ}$ and two minor peaks around $2{\theta}=4.4^{\circ}$ and $5.1^{\circ}$, which are due to regular mesopores of hexagonal structure. The morphology of silica particles prepared were spherical shape and the average particle size was $1.0{\mu}m$.