• Title/Summary/Keyword: Physical Memory

Search Result 473, Processing Time 0.024 seconds

Implementation and characterization of flash-based hardware security primitives for cryptographic key generation

  • Mi-Kyung Oh;Sangjae Lee;Yousung Kang;Dooho Choi
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.346-357
    • /
    • 2023
  • Hardware security primitives, also known as physical unclonable functions (PUFs), perform innovative roles to extract the randomness unique to specific hardware. This paper proposes a novel hardware security primitive using a commercial off-the-shelf flash memory chip that is an intrinsic part of most commercial Internet of Things (IoT) devices. First, we define a hardware security source model to describe a hardware-based fixed random bit generator for use in security applications, such as cryptographic key generation. Then, we propose a hardware security primitive with flash memory by exploiting the variability of tunneling electrons in the floating gate. In accordance with the requirements for robustness against the environment, timing variations, and random errors, we developed an adaptive extraction algorithm for the flash PUF. Experimental results show that the proposed flash PUF successfully generates a fixed random response, where the uniqueness is 49.1%, steadiness is 3.8%, uniformity is 50.2%, and min-entropy per bit is 0.87. Thus, our approach can be applied to security applications with reliability and satisfy high-entropy requirements, such as cryptographic key generation for IoT devices.

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

The characteristics of D.C. switching threshold voltage for amorphous $As_{10}Ge_{15}Te_{75}$ thin film (비정질 $As_{10}Ge_{15}Te_{75}$박막의 D.C. 스위칭 임계전압 특성)

  • 이병석;이현용;이영종;정홍배
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.813-818
    • /
    • 1996
  • Amorphous As$_{10}$Ge$_{15}$ Te$_{75}$ device shows the memory switching characteristics under d.c. bias. In bulk material, a-As$_{10}$Ge$_{15}$ Te$_{75}$ switching threshold voltage (V$_{th}$) is very high (above 100 volts), but in the case of thin film, V$_{th}$ decreases to a few or ten a few volts. The characteristics of V$_{th}$ depends on the physical dimensions such as the thickness of thin film and the separation between d.c. electrodes, and the annealing conditions. The switching threshold voltage decreases exponentially with increasing annealing temperature and annealing time, but increases linearly with the thickness of thin film and exponentially with increasing the separation between d.c. electrodes. The desirable low switching threshold voltage, therefore, can be obtained by the stabilization through annealing and changing physical dimensions.imensions.sions.

  • PDF

Efficiently Managing the B-tree using Write Pattern Conversion on NAND Flash Memory (낸드 플래시 메모리 상에서 쓰기 패턴 변환을 통한 효율적인 B-트리 관리)

  • Park, Bong-Joo;Choi, Hae-Gi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.521-531
    • /
    • 2009
  • Flash memory has physical characteristics different from hard disk where two costs of a read and write operations differ each other and an overwrite on flash memory is impossible to be done. In order to solve these restrictions with software, storage systems equipped with flash memory deploy FTL(Flash Translation Layer) software. Several FTL algorithms have been suggested so far and most of them prefer sequential write pattern to random write pattern. In this paper, we provide a new technique to efficiently store and maintain the B-tree index on flash memory. The operations like inserts, deletes, updates of keys for the B-tree generate random writes rather than sequential writes on flash memory, leading to inefficiency to the B-tree maintenance. In our technique, we convert random writes generated by the B-tree into sequential writes and then store them to the write-buffer on flash memory. If the buffer is full later, some sequential writes in the buffer will be issued to FTL. Our diverse experimental results show that our technique outperforms the existing ones with respect to the I/O cost of flash memory.

Fabrication of resistive switching memory by using MoS2 layers grown by chemical vapor deposition

  • Park, Sung Jae;Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.298.1-298.1
    • /
    • 2016
  • Two-dimensional materials have been received significant interest after the discovery of graphene due to their fascinating electronic and optical properties for the application of novel devices. However, graphene lack of certain bandgap which is essential requirement to achieve high performance field-effect transistors. Analogous to graphene materials, molybdenum disulfide ($MoS_2$) as one of transition-metal dichalcogenides family presents considerable bandgap and exhibits promising physical, chemical, optical and mechanical properties. Here we studied nonvolatile memory based on $MoS_2$ which is grown by chemical vapor deposition (CVD) method. $MoS_2$ growth was taken on $1.5{\times}1.5cm^2$ $SiO_2$/Si-substrate. The samples were analyzed by Raman spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Current-voltage (I-V) characteristic was carried out HP4156A. The CVD-$MoS_2$ was analyzed as few layers and 2H-$MoS_2$ structure. From I-V measurement for two metal contacts on CVD-$MoS_2$ sample, we found typical resistive switching memory effect. The device structures and the origin of nonvolatile memory effect will be discussed.

  • PDF

The Architecture of the Flash Memory Storage System using Page Delete Information (페이지 삭제정보를 활용하는 플래시 저장장치의 구조)

  • Jung, Ho-Young;Park, Sung-Min;Kang, Soo-Yong;Cha, Jae-Hyuk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.958-962
    • /
    • 2009
  • Flash memory, which replaces hard disk recently, has different physical characteristics with hard disk. For the performance of flash memory based storage system, many researches over OS and file system layers has been doing. In this paper, we propose the architecture of flash memory based storage which uses information of page invalidation when file deletion occurs from upper layer. Also, we evaluate the performance of proposed system. Proposed system effectively increases IO performance by using page invalidation information to block merge and wear leveling algorithms.

An Efficient FTL Algorithm for Flash Memory (플래시 메모리를 위한 효율적인 사상 알고리즘)

  • Chung Tae-Sun;Park Hyung-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.483-490
    • /
    • 2005
  • Recently, flash memory is widely used in embedded applications since it has strong points: non-volatility, fast access speed, shock resistance, and low power consumption. However, due to its hardware characteristics, it requires a software layer called FTL(flash translation layer). The main functionality of FTL is to convert logical addresses from the host to physical addresses of flash memory We present a new FTL algorithm called STAFF(State Transition Applied Fast Flash Translation Layer). Compared to the previous FTL algorithms, STAFF shows five times higher performance than basic block mapping scheme and requires less memory. We provide performance results based on our implementation of STAFF and previous FTL algorithms.

The adverse impact of personal protective equipment on firefighters' cognitive functioning

  • Park, Juyeon
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Firefighters wear Personal Protective Equipment (PPE) for protection from environmental hazards. However, due to the layers of protective functions, the PPE inevitably adds excessive weight, bulkiness, and thermal stress to firefighters. This study investigated the adverse impact of wearing PPE as an occupational stressor on the firefighter's cognitive functioning. Twenty-three firefighters who had been involved in firefighting at least for 1 year were recruited. The overall changing trend in the firefighter's cognitive functioning (short-term memory, long-term memory, and inductive reasoning) was measured by the scores of three standardized cognitive tests at the baseline and the follow-up, after participating in a moderate-intensity physical activity, wearing a full ensemble of the PPE. The study findings evinced the negative impact of the PPE on the firefighter's cognitive functioning, especially in short-term memory and inductive reasoning. No significant influence was found on the firefighter's long-term memory. The results were consistent when the participant's age and BMI were controlled. The outcomes of the present study will not only fill the gap in the literature, but also provide critical justification to stakeholders, including governments, policymakers, academic communities, and industry, for such efforts to improve human factors of the firefighter's PPE by realizing the negative consequences of the added layers and protective functions on their occupational safety. Study limitations and future directions were also discussed.

Actoprotective effect of ginseng: improving mental and physical performance

  • Oliynyk, Sergiy;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.144-166
    • /
    • 2013
  • Actoprotectors are preparations that increase the mental performance and enhance body stability against physical loads without increasing oxygen consumption. Actoprotectors are regarded as a subclass of adaptogens that hold a significant capacity to increase physical performance. The focus of this article is studying adaptogen herbs of genus Panax (P. ginseng in particular) and their capabilities as actoprotectors. Some animal experiments and human studies about actoprotective properties of genus Panax attest that P. ginseng (administered as an extract) significantly increased the physical and intellectual work capacities, and the data provided suggests that ginseng is a natural source of actoprotectors. Preparations of ginseng can be regarded as potential actoprotectors which give way to further research of its influence on physical and mental work capacity, endurance and restoration after exhaustive physical loads while compared with reference actoprotectors.