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Abstract

Hardware security primitives, also known as physical unclonable functions

(PUFs), perform innovative roles to extract the randomness unique to specific

hardware. This paper proposes a novel hardware security primitive using a

commercial off-the-shelf flash memory chip that is an intrinsic part of most

commercial Internet of Things (IoT) devices. First, we define a hardware secu-

rity source model to describe a hardware-based fixed random bit generator for

use in security applications, such as cryptographic key generation. Then, we

propose a hardware security primitive with flash memory by exploiting the

variability of tunneling electrons in the floating gate. In accordance with the

requirements for robustness against the environment, timing variations, and

random errors, we developed an adaptive extraction algorithm for the flash

PUF. Experimental results show that the proposed flash PUF successfully gen-

erates a fixed random response, where the uniqueness is 49.1%, steadiness is

3.8%, uniformity is 50.2%, and min-entropy per bit is 0.87. Thus, our approach

can be applied to security applications with reliability and satisfy high-entropy

requirements, such as cryptographic key generation for IoT devices.
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1 | INTRODUCTION

Large-scale Internet of Things (IoT) devices are increasingly
being connected to the Internet to provide various services
beyond the state-of-the-art, such as smart healthcare, indus-
trial control, consumer electronics, and drone-based safety
surveillance and agriculture systems [1–3]. Accordingly, the
number of points where an attacker can penetrate the net-
work through the most vulnerable IoT device is increasing.
Therefore, even for resource-constrained IoT devices, it is
necessary to ensure strong security that matches the
required security level of the entire connected network. A
conventional security mechanism provides a manufacturer-
generated cryptographic key that is programmed into the
device, which is unique to every device. However, as the
number of IoT devices increases exponentially (expected to
reach 82 billion in 2025), programming a different key into
every device will become an unreasonably costly, time-con-
suming, or even impossible process. Therefore, cost-
effective and easily applied security solutions for large-scale
IoT devices are required [4, 5].

A physical unclonable function (PUF), which is
unpredictable, unclonable, and unique to a specific
device or chip, is considered a fundamental hardware
security primitive, especially for resource-constrained IoT
devices [1, 6, 7]. A PUF generates unique values that can-
not be physically replicated due to variations in micro-
structures that are randomly generated, even via the
same manufacturing process. The PUF is generated and
used when needed and disappears without being saved to
memory or a file [8, 9]. Through error correction and
entropy amplification of the PUF output, it can be widely
used for security applications such as device-specific root
key, identity, and authentication credentials [10–12].

Various PUF systems have been presented, including
ring oscillator (RO) PUF [13, 14], arbiter PUF [15, 16],
and memory-based PUF [17–19]. Most types of PUFs
required additional circuitry dedicated to the device, thus
increasing hardware complexity, which in turn makes it
difficult to apply to resource-constrained IoT devices. The
prominent candidates as an intrinsic PUF for IoT device
security are those using static random-access memory
(SRAM) [17], dynamic random-access memory (DRAM)
[18, 20, 21], and flash memory [19, 22, 23].

Although SRAM- and DRAM-based PUFs are viable
security components, they have several drawbacks. The
SRAM unit is usually used as a memory element for the
processor, and it is always powered. Therefore, the SRAM
PUF response must be extracted during a very early boot
stage before the SRAM is used by the processor; this
means that SRAM PUFs cannot be used during run-time.
DRAM PUFs based on the decay process are known to
take more than a few minutes to extract meaningful PUF

responses [20], which limits their use in practical security
applications.

Another source of memory-based hardware security
primitives is commercial off-the-shelf (COTS) flash memory
chips. Flash memories are widely used as nonvolatile stor-
age, where NOR flash can be used as code storage for any
read-only applications and NAND flash can be used as
media storage for a large amount of data. There has been
an increasing interest in the generation of flash-based PUFs
using cell-to-cell manufacturing variation. Sakib and others
proposed a program disturb-based flash PUF, with a PUF
response determined as a bit flip pattern due to program
stress operation on the erased state page [19]. However, this
technology suffers from aging with increasing number of
PUF trials. Furthermore, Jia and others presented methods
to extract a 128-bit flash PUF response based on partial
erasing and partial programming, where the number of par-
tial erasing and programming operations required to flip
the selected cells is recorded as the raw output numbers,
which are post-processed to obtain a reliable 128-bit key
[22]. However, there are no unpredictability results for the
generated 128-bit key, which may limit their widespread
use in security applications. Kim and others developed a
flash PUF by properly modifying the reading voltage [23],
which overcomes the aging problem [19]. However, some
circuitry (hardware) modifications are required to switch
the reading voltage of the flash memory for both normal
operation and PUF operation, which makes it difficult to
apply it to COTS devices.

In this study, we also considered a COTS flash memory
chip as a source of hardware security primitive, where the
extraction is based on variability of tunneling electrons in
the floating gate of the flash cell. We first define a general
hardware security source model and then propose a new
flash PUF extraction method from the COTS flash memory
chip without hardware modification. Unlike existing flash
PUFs, we extract the response in a one-time program/erase
(P/E) cycle, leading to robustness over aging. To reproduce
PUF responses under various operating conditions, we pro-
pose an adaptive method to enhance reliability. The result-
ing flash-based PUF shows good uniqueness, steadiness,
uniformity, and randomness (unpredictability). The main
contribution of this study is to provide an efficient and reli-
able flash PUF that can be practically used in security appli-
cations, such as high-entropy cryptographic key generation
for IoT devices.

The remainder of this paper is organized as follows.
Section 2 defines a general hardware security source mode
with a hardware security primitive. Section 3 introduces
uncertainty of flash memory resulting from residual elec-
trons in the floating gate of a flash cell and then proposes a
flash PUF extraction method that is robust to various oper-
ating conditions, aging, and random errors. The
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corresponding experimental results and discussion are pre-
sented in Section 4. Section 5 demonstrates an application
for high-entropy cryptographic key generation based on the
proposed flash PUF. Section 6 finally concludes the paper.

2 | HARDWARE SECURITY
SOURCE MODEL

We first define a hardware security source model to
describe a hardware-based random bit generator for
use in security applications, such as high-entropy crypto-
graphic key generation. Figure 1 illustrates the source
model including two main parts. We note that this model
is similar to an entropy source model defined by NIST
[24], in that it must generate a sequence of random bits,
but the output must be reproduced for the same input
(challenge).

In Figure 1A, the hardware security primitive corre-
sponds to various PUF sources, such as RO PUF, Arbiter
PUF, and Memory PUFs, as previously described. The post-
processing component is a function to improve the quality
of primitive raw response [25]. Debiasing is a post-
processing algorithm used to eliminate bias in raw response.
It is well known that the biased PUF response is problem-
atic when used with an error correction method. Due to
helper data entropy loss [11], it is common that remaining
entropy in the corrected PUF response cannot be assumed.
To avoid this case, post-processing can be applied to the
raw response, and this optionally post-processed raw
response is finally called the response of the hardware secu-
rity primitive in our model.

In Figure 1B, errors are corrected so that the same
response is always generated for the same challenge, and
an entropy can be amplified by a conditioning function
(such as a Hash function) [11, 12]. If there is no error in
the response or the entropy itself is large enough, these
components do not need to be used. Then, the final high-
entropy output of this model can be used for security
applications such as device-specific cryptographic key

generation. All optional blocks in Figure 1 inevitably
incur entropy loss. First, there is bit loss in the debiasing
algorithm depending on the number of “1” in the raw
response. Second, the helper data stored for error correc-
tion leak information about the response, and its entropy
loss depends on the error-correcting codes used. Finally,
the error-corrected response can be compressed to
amplify its entropy (e.g., via a Hash function) such that
the output has high-entropy or full-entropy per bit.
Therefore, considering all of these factors, it is necessary
to increase the number of extracted raw response bits
from the hardware security primitive to derive the final
output with the desired entropy.

In Sections 3 and 4, we focus on the first part shown
in Figure 1A, where the flash memory is used as our
hardware security primitive and the performance
(e.g., uniqueness, steadiness, uniformity, and random-
ness) is assessed on the response bit stream. Section 5
describes the calculation of the number of raw response
bits according to the required output bits and the level of
entropy for key generation of IoT devices, which con-
siders the second part with error correction and entropy
amplification.

3 | PROPOSED FLASH-BASED
SECURITY PRIMITIVE

This section describes the primary operation of flash
memory to clarify the source of the uncertainty, to
demonstrate that flash memory is a good source of a
hardware security primitive. Then, we propose a flash
PUF extraction algorithm, especially focusing on robust-
ness over operation conditions such as environmental
variations, device-dependent timing variations, and
aging.

3.1 | Flash memory operation and
uncertainty

A flash memory cell is a floating gate MOS transistor,
that is, a transistor with a gate completely surrounded by
dielectrics, the floating gate (FG), and electrically gov-
erned by a capacitively coupled control gate [26]. Being
electrically isolated, the FG stores electrons for the cell
device. The quality of the dielectrics guarantees the non-
volatility, whereas its thickness allows the possibility to
program or erase the cell via electrical pulses. Usually,
the gate dielectric, that is, the one between the transistor
channel and the FG, is called a “tunnel oxide” because
Fowler–Nordheim (FN) electron tunneling occurs
through it [26].F I GURE 1 Schematic of the hardware security source model
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Figure 2 shows the current-voltage plane of the erased
state cell and programmed state cell, where both states
give the same transconductance curve, but it is shifted by
a magnitude that is proportional to the stored electron
charge Q in the FG. When reading the current at a fixed
gate bias V read, a very high current (Id > Id,ref ) means the
erased state of logic “1” and zero current means the pro-
grammed state of logic “0” [26].

The erasing process is performed by the FN electron
tunneling mechanism, which is a quantum-mechanical
tunnel induced by an electric field. Applying a strong
electric field across a thin oxide for a sufficient period of
time (e.g., typically several hundreds of milliseconds), it
is possible to force electron tunneling through it without
destroying its dielectric properties. However, stopping the
erasing process within the required erasing time prevents
electron tunneling. The red lines in Figure 2 represent
shifted transconductance curves due to the erasing pro-
cess being stopped after different time periods, where the
magnitude of the shift is proportional to the residual elec-
tron charge in the FG. Reading the cell with V read thus
gives a cell-dependent fixed logic value of “0” or “1.”
When the erasing process is stopped and its current-
voltage plane is positioned at the boundary that deter-
mines “0” and “1,” the cell is read randomly without
yielding a fixed logic value. This causes errors in the PUF
response, which are discussed later in this section as they
introduce reliability issues.

On the other hand, each flash cell may store a differ-
ent number of charges in FG as a result of variations dur-
ing the manufacturing process, which results in a
different threshold voltage V th per cell. The distribution
of V th is wide, so cells with low (or high) V th show faster
(or slower) erase times [26]. Given enough time for the
electrons stored in the FG to tunnel through the tunnel
oxide, all dedicated cells in a flash memory device will
eventually output the erased logic state of 1. However, if
the erasing process is intentionally stopped at a specific
elapsed time, a unique bit flip (“0” ! “1”) occurs for each
cell location. Exactly which bits are erased (changed from
“0” to “1”) earlier than the others depends on the

quantity of tunneling electrons present when the erasing
process is stopped, which results in uncertainties in the
flash memory performance.

3.2 | Basic concept of proposed flash
PUF extraction

Based on the cell-to-cell variability of tunneling electrons
in FG during the erasing process, we first explain a basic
concept to extract a flash PUF response. Figure 3 shows
the erasing process over an elapsed time considering an
8-bit flash memory with an initial state of all “0” as an
example. When a memory is read at the elapsed time t1,
there is no cell that has been bit-flipped from “0” to “1,”
and the first bit flip occurs at t2. Over time, the number
of bit-flipped cells increases, and eventually all 8-bit cells
are erased to the final state of “1.”

As described earlier, the bit-flipped cells at a specific
elapsed time is unique for each device, and for each cell
in the same device, which enables the construction of a
flash PUF based on this randomness. Consequently, we
can extract a flash PUF response to set a value obtained
by reading a dedicated memory at a specific elapsed time.
As an example in Figure 3, the readout value at t3, that
is, “01001000,” is used as the raw response of the flash
PUF. This raw response will be ideally reproduced when
the same elapsed time t3 is applied to the flash PUF.

3.3 | Reliability considerations

In practice, each time a PUF instance is queried with a
challenge, it will return a slightly different response due
to errors. To use a PUF in security applications, the num-
ber of erroneous bits in the response should be minimized
so that the error correction overheads decrease

F I GURE 3 Basic concept of the flash PUF extractionF I GURE 2 Erasing and read operation of a flash cell
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significantly. Here, we consider several factors that cause
errors, toward the aim of establishing a reliable flash
PUF that will react similarly under the expected operat-
ing conditions.

One obvious factor contributing to errors is environ-
mental variations, especially the dependence of the MOS-
FET V th on the operating temperature T. The variations
in temperature lead to variations in the number of
tunneling electrons in FG, which influences V th. In this
case, the current-voltage plane will be shifted by varia-
tions in T. Other common variations in environmental
conditions, such as voltage and pressure, are not impor-
tant in this work because COTS devices are not expected
to be influenced by them under realistic conditions.

Next, the COTS device-dependent timing variation is
also an important factor, mainly arising from variations
in transferring commands to the flash memory chip in
the asynchronous interface, which is controlled by a
microcontroller. To extract our response from the flash
PUF, the erasing process must be stopped after a specific
elapsed time, but unpredictable timing variations occur
at the interface between the MCU and flash memory
chip, leading to errors.

Moreover, aging is another influential operating con-
dition that can drastically influence flash memory. Flash
chips are usually specified for 105 P/E cycles and cycling
causes a fairly uniform degradation of the cell perfor-
mance, mainly due to tunnel oxide degradation. This
effect leads to an increased erase time, which in turn
reduces the reliability of flash PUF.

Apart from the aforementioned three factors, varia-
tions in V th always result in the corresponding random
errors in the proposed flash PUF extraction. When the
erasing process is stopped, the V th is not shifted suffi-
ciently from the programmed state to the erased state,
and some cells will be an uncertain state. In these cases,
the cells can be read as either logic state “0” or “1.” This
is a random behavior that leads to an error in a PUF
response. Note that these errors can be used as a source
of random numbers or nonce. However, in this work, we
focus on the static response behavior for PUF applica-
tions, where it is desirable to eliminate random-number-
like errors. The easy method for achieving this is to per-
form multiple readouts and filter the errors by a majority
rule. For example, if logic state “0” appears more than
3 times out of 5 readouts, the resulting logic state is con-
sidered to be “0,” and vice versa.

Figure 4 shows the number of bit flips (i.e., erased
bits) in a page (2048 bits) as a function of the erase
elapsed time. Even if the elapsed time is fixed during the
erasing process, some cells experience bit flips whereas
others do not. For example, the number of bit flips at
34 ms of erase time varies from 685 bits to 823 bits at

room temperature T¼ 25 ∘C, which corresponds to a 7%
variation occurs. This is mainly due to environmental
variations, as previously explained. Figure 4 also shows
that variations in bit flipping increase as the elapsed time
increases, which leads to a corresponding increase in the
bit error rate. Here, the appropriate erase time for each
page of a flash chip can be set to ensure small variations
in the number of bit flips. Figure 4 also shows the num-
ber of bit flips at different temperatures. The graph is
shifted to left at a high temperature of T¼ 70 ∘C, whereas
the graph is shifted to right at low temperature of
T¼�20 ∘C.

F I GURE 4 Number of bit flips during erasing process for

different temperatures
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3.4 | Reliable flash PUF extraction
algorithm

Considering the reliability factors discussed above, we
propose an adaptive time to stop the erasing process to
satisfy the target number of bit flips in a specified mem-
ory region. By increasing the small amount of elapsed
time during the erasing process, we can read the memory
at each elapsed time and check whether the number of
bit flips satisfies the target value. In other words, the
challenge for the flash PUF now becomes the target num-
ber of bit flips in a specified memory region, rather than
a fixed elapsed time, and its raw response will be the
readout value when the erasing process is stopped at the
time that satisfies the target number of bit flips.

The proposed flash PUF implementation requires
system-privileged flash operations (such as Reset, Erase,
Program, and Suspend/Resume), which are expected to
be available in most commercial flash memory chips.
Relying on these operations, we finally propose the flash-
based PUF extraction mechanism in Algorithm 1. Ini-
tially, the specific sector Si and pages P belonging to the
selected sector Si are selected to extract n raw response
bits. The P are programmed to the logic state “0.” In this
case, the readouts of P are all zeros and thus the number
of bit flips in the initial state is nbf ¼ 0, where the bit flip
means the transition from “0” to “1” and is calculated by
counting the number of “1” in n bits. Then, an “Erase”
operation is started in Si and an iterative “Suspend”-
“Resume” operation is performed at a time interval Ts.
Once erasing is stopped or suspended at the jth time
interval, n cells (P pages) m times are read and the major-
ity rule is applied to these multiple readouts to filter out
erroneous bits. Then, the filtered readout values of n cells
are recorded in rawResponse. The number of bit flips
among n bits in rawResponse is counted to determine
nbfðjÞ. If nbfðjÞ is larger than the predefined target num-
ber of bit flips nth, then its recorded rawResponse
becomes the Flash PUF raw response and the extraction
process stops after the “Resume” operation. Otherwise,
the “Resume” and “Suspend” operations are repeated
with Ts until the stop condition, nbfðjÞ≥nth, is satisfied.

Furthermore, the target number of bit flips nth in the
extraction algorithm must be carefully selected. There is
a tradeoff between the error rate occurring in the raw
response and the efficiency of post-processing to remove
the bias in the raw response. If a target is selected where
excessive bit flipping occurs, the number of bit flips can
greatly vary when performing the extraction of the raw
response, which leads to errors. Therefore, it is desirable
to determine nth as a function of the erasing time to avoid
an abrupt increase in bit flips. On the other hand, if nth is
selected where bit flips rarely occur, the raw response

becomes too sparse (i.e., almost all “0”), so that the num-
ber of bits in the debiased response will be small.

We analyzed the time required to extract PUF
response bits using Algorithm 1. Denoting Tp as the page
program time and Tr as the page read time, the time
overhead is calculated as

T¼ P �TpþN � ðTsþTsusþm �P �TrÞ, ð1Þ

where N is determined as the j that satisfies nbfðjÞ≥nth
and Tsus is a suspend latency where the following reading
operation is possible after the Suspend step. Note that
from (1), for each iteration, a delay time Ts, suspend
delay Tsus, and m times P page read time ðm �P �TrÞ
are required. The main advantage of the proposed flash
PUF is that it can be easily applied to most IoT sensor
devices equipped with flash memory without any hard-
ware modifications. In addition, it requires only one P/E
cycle to extract a PUF response, which minimizes the
effect of chip aging. Moreover, the proposed extraction
algorithm is an adaptive method that can cope with vari-
ous operating conditions to provide a reliable PUF
response. The capability of extracting a PUF response
from even a single page of flash memory is sufficient to
enable a large number of challenge response pairs, which
in turn makes it attractive for various security
applications.

3.5 | Post-processing (debiasing)

As mentioned in Section 2, a simple post-processing oper-
ation can be used to increase the quality of the hardware
security primitive raw response [25]. Because bias inevita-
bly occurs due to the characteristics of the proposed flash
PUF, we suggest using von Neumann’s method as a post-
processing function to reduce the statistical bias of the
raw response to give an unbiased response. Von Neu-
mann’s method produces independent unbiased random
bits from biased bits. If the two consecutive input bits are
“00” or “11,” then they are discarded. If the input bits are
“01” or “10,” then the first input bit is taken [27, 28].
Debiasing typically produces side information called
debiasing alignment dataD that contains information
where bits are maintained or discarded. This D needs to
be stored publicly and used during reproduction to avoid
errors due to misalignment in the reproduced response
data. Note that it was previously demonstrated that no
entropy leakage due to D occurs when applying von Neu-
mann’s method [28].

It is known that for a source that produces biased ran-
dom bits ðs1, s2,…Þ, with Prðsi ¼ 0Þ¼ p and p≠ 1=2, von
Neumann’s method extracts approximately n �p � ð1�pÞ
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unbiased bits from n biased bits. Although this debiasing
method is a very simple post-processing function, the
number of output bits is proportionally reduced by
p � ð1�pÞ. Considering the proposed flash PUF extraction
algorithm, p becomes 1�nth=n because nth is the number
of “1” among the n raw response bits, so the dropping rate
d mentioned in Section 2 will be

d¼ 1�nth
n

� �
�nth
n
: ð2Þ

Then, the number of response bits after debiasing
would be approximately n �d. Some efficient post-
processing methods are also being developed [25, 29, 30],
but these are beyond the scope of this work.

4 | EXPERIMENTAL RESULTS
AND DISCUSSION

We implemented and tested the proposed Flash PUF. We
first introduce four commonly used performance metrics
for PUF responses (uniqueness, steadiness, uniformity,
and randomness), where each of these metrics quantifies
an essential quality factor of a PUF [14]. Then, we
describe our test environments and performance results.
Experimental results on the temperature dependency and
comparisons are also provided in this section.

4.1 | Performance metrics

Uniqueness (Extra-Chip Variation: EC) is the variability
across multiple devices and was assessed by evaluating
the inter-Hamming distance of the responses among the
PUF devices. Note that the optimal value for uniqueness
is 50%. Deviations from this optimal value demonstrate a
correlation between PUF instances.

Steadiness (Intra-Chip Variation: IC) is the repeatabil-
ity over multiple measurements in a particular PUF
device and this is assessed by evaluating the intra-
Hamming distance of the responses in a PUF device. This
metric is used to determine the required error correction
method and related parameters. An ideal PUF always
returns the same response for a given challenge, so the
value for steadiness is 0%.

Uniformity (U) is also an important metric to describe
the distribution of 0s and 1s in a PUF response, where
the ideal uniformity is achieved when “0” and “1” occur
with equal probability. The proposed Flash PUF is pro-
cessed by von Neumann’s debiasing method, so the uni-
formity is always near the optimal value of 50%.

Randomness (R) represents the unpredictability. In
contrast with three first metrics, there is no specific for-
mula to evaluate the randomness of PUFs. We suggest
using the test provided by the NIST randomness test suite
(NIST SP 800-90B) [24]. This test suite provides min-
entropy, which helps establish the minimum response
length required to meet a device’s security requirements.
For example, if a PUF generates 256 bit responses, but
those responses contain only 0.25 min-entropy per bit,
the maximum security level that can be achieved from
security algorithms or protocols using these responses is
64 bits of security. The optimal min-entropy per bit is 1.

4.2 | Test environments and results

We designed our own test platform to implement the pro-
posed flash PUF. The platform is equipped with a widely
used microcontroller unit (MCU) at speeds up to
216 MHz, which is the STM32F779 with Arm Cortex-M7.
We used the MT25QL512 NOR-Type 64 MB flash mem-
ory from Micron Technology. The flash chip has 1024 sec-
tors of size 64 KB and each sector includes 256 pages
with a size of 256 bytes. The MCU communicates with
the flash memory using a quad serial peripheral interface
(QSPI). To realize Algorithm 1 of the proposed flash
PUF, we used commands that the MT25QL512 flash
device already supports: PAGE PROGRAM, SECTOR
ERASE, ERASE SUSPEND/RESUME, and READ [31]. If
the flash device that provides these commands is con-
nected to the MCU through an SPI (or QSPI), anyone can
implement Algorithm 1. Moreover, many commercial
flash devices, especially NOR-Type SPI flash chips, sup-
port those commands [31, 32], so the proposed flash-
based PUF can be applied in many cases.

Figure 5 shows our test platform and test environ-
ment, where the evaluation is performed over 8 boards.

F I GURE 5 Test platform and test environment
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Our tests involved two steps. First, we calculated the
uniqueness, steadiness, and uniformity for a 128-bit PUF
response. Second, we perform a randomness test by NIST
SP 800-90B that requires at least a 1-Mbit PUF response.
For both tests, the von Neumann debiasing method in
Section 3.5 was used and implemented with the on-board
MCU.Test 1: For uniqueness, steadiness, and uniformity,
we considered a given one page (256 bytes) at a specific
sector for each platform to extract 2048 bits of raw
response. The parameters for Algorithm 1 were number
of raw response bits n¼ 2048; number of target pages
P¼ 1, delay time to suspend Ts ¼ 200 μs. The target
threshold of bit flips is nth ¼ 220, which is the value to
avoid an abrupt increase in bit flips according to the eras-
ing time, as shown in Figure 4. The 2048 bits were repeat-
edly extracted m¼ 5 times, filtered using the majority
rule, and then processed by von Neumann’s debiasing
method. Because n¼ 2048 and nth ¼ 220, p is approxi-
mately 0.9 and d was calculated as 0.09 as described in
Section 3.5. Therefore, we obtained approximately
184 unbiased bits from 2048 bits, that is,
n �d¼ 2048�0:09¼ 184. Among the unbiased bits, we
took the first 128 bits for the metric calculations over
8 different boards. Using (1), we calculated the time
overhead to extract 2048 raw response bits in Test 1. For
the NOR flash chip used in the experiments, a typical
page program time (256 bytes) was Tp ¼ 120 μs and a typ-
ical suspend latency is Tsus ¼ 15 μs [31]. To reduce the
time overhead in the experiment, the iteration in Algo-
rithm 1 was started from 28 ms, because meaningful bit
flips only occurred after this time, and the number of bit
flips reached to the target nth around 31 ms at room tem-
perature (Figure 4). Noting that Ts ¼ 200 μs, P = 1, and
m = 5 in test 1, it takes (120 μsþ28ms) for a 1 page pro-
gram and erase time before the first suspend, and (200
μsþ15μsþ5 �Tr) for each iteration. The number of itera-
tions N was different for each of the 8 different boards,

and it was found experimentally within 15 iterations in
most cases. Although the exact Tr is not provided by [31],
the overall timing overhead is approximately 32 ms to
extract 2048 raw response bits, assuming a Tr of several
microseconds. Table 1 summarizes the performance of
the proposed flash PUF at room temperature. The IC and
EC calculations were performed by recording the PUF
responses with a laptop 20 times. Table 1 shows that EC
for the 8 boards is 49.1%, which is almost optimal. The IC
is 2%–5% for each board, which is close to the optimal
value of 0%. The final uniformity value was approxi-
mately 50%.
Test 2: To evaluate the randomness, we considered 32 sec-
tors to extract sufficient raw response bits because the
NIST test suite require at least 1 Mbit [24]. All parame-
ters were the same as for Test 1, but the collected raw
response bits was n¼ 224. Then, the unbiased response
bits that were obtain from the von Neumann method
were approximately 2 Mbit. The NIST test suite provided
10 entropy estimates and min-entropy was determined as

TAB L E 1 Performance evaluation of the flash PUF

Board Uniqueness Steadiness Uniformity Min. Entropy
(EC) (IC) (U) hmin

Board 1 49.10% 4.75% 53.13% 0.8751

Board 2 49.10% 3.08% 50.31% 0.8592

Board 3 49.10% 4.72% 52.81% 0.8731

Board 4 49.10% 3.47% 46.06% 0.8767

Board 5 49.10% 3.59% 47.19% 0.8876

Board 6 49.10% 4.19% 50.16% 0.8801

Board 7 49.10% 2.39% 49.69% 0.8882

Board 8 49.10% 4.53% 52.03% 0.8919

F I GURE 6 Steadiness as a function of temperature
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the minimum entropy value among these estimates [24].
Table 1 shows that the min-entropy for each device was
approximately 0.85–0.89 per bit.

4.3 | Temperature dependence

To evaluate the steadiness of the proposed flash PUF
under different temperatures, 4 boards of the test plat-
form in Figure 5 were placed in a temperature chamber.
The temperature was varied from �20 ∘C to 70 ∘C with
15 ∘C increments, including room temperature 25 ∘C as
the reference PUF response. Figure 6 shows the steadi-
ness values for each of the 4 boards at the various test
temperatures, where 20 measurements were taken at
each temperature. The steadiness only fluctuated slightly
over the entire temperature, remaining within 6%.

4.4 | Comparisons and discussion

Table 2 compares the performance of the proposed PUF
and existing PUFs in terms of the four performance met-
rics (i.e., EC, IC, U, and R), and run-time extractability.
The optimal values for EC, IC, U, and R are 50%, 0%,
50%, and 1, respectively. Although a direct comparison is
not straightforward because of the different platforms
used in each study, this overview indicates that the pro-
posed PUF scheme is appropriate for resource-
constrained IoT devices.

The conventional SRAM PUF shows excellent perfor-
mance close to the optimal values, as shown in Table 2.
SRAM PUF can be modified for use during run-time by
allocating a dedicated SRAM section for PUF use and
implementing SRAM to be powered on and off. However,
such modifications are not easy to find in general IoT
devices, so access to SRAM PUF during normal operation
is limited. In contrast, DRAM PUF can be accessed at
any time, but typically takes a few minutes to generate a
response. In addition, DRAM PUFs show relatively low
uniqueness performance (EC).

We also compared the existing flash PUFs presented
in previous studies [19, 22] that do not require any hard-
ware modifications. These PUFs have good performance
in terms of uniqueness, steadiness, and uniformity. How-
ever, the program disturb-based flash PUF of [19]
requires many program cycles (e.g., around 10,000). [22]
mainly proposed post-processing algorithms (different
from the debiasing method) to select the most reliable
bits among raw response bits, leading to high reliability.
Moreover, there were no randomness (unpredictability)
results presented in these studies. Although existing flash
PUFs can be good candidates for specific security applica-
tions, we believe that our high-performance flash PUF
with only one P/E cycle could be a practical security tech-
nique to extract the cryptographic key for IoT devices.

5 | APPLICATION FOR
CRYPTOGRAPHIC KEY
GENERATION

We now introduce an application for cryptographic key
generation based on the proposed flash PUF, where a
high-entropy key can be generated with the second part
of hardware security source model described in Section 2.
In general, cryptographic keys are generated from a true
random number generator, stored in nonvolatile mem-
ory, and loaded when necessary. Such key management
is not desirable in an IoT environment where the number
of devices is large. It is expected that more than 82 billion
IoT devices will be connected to the Internet by 2025,
and at least 256-bit keys are required for this cases. In
addition, because the generated 256-bit key must be
unpredictable for the attacker, it is desirable to have
high-entropy or full-entropy conditions. In this section,
we show how an effective 256-bit key can be generated
using our flash-based hardware security primitive.

Figure 1B consists of a reproduction block that can
correct errors and a Hash function that can amplify
entropy with compression [11, 12]. Keeping in mind that
the PUF based cryptographic key must be reproducible

TAB L E 2 Comparison of the proposed PUF and existing PUFs

PUFs Uniqueness Steadiness (IC) Uniformity Randomness (R) Run-time
(EC) (Nominal) (U) (min-entropy) extraction

Proposed flash PUF 49.1% 2%–5% 46%–53% 0.85–0.89 Possible

SRAM PUF [17] 49.7% 2%–5% Not reported 0.57–0.7 Partially possible

DRAM PUF [18] 35.09% 2.2% Not reported Not reported Difficult

Sakib’s flash PUF [19] 49%–51% 3%–8% 42%–51% Not reported Possible

Jia’s flash PUF [22] 46.8%–49.9% <10�6 (post-processed) 46.9%–53.6% Not reported possible
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on demand, an error correction code (ECC) can be used
to reproduce the initial PUF response with helper data
[33, 34]. However, there is a drawback in storing helper
data, which can introduce a security problem [11].
Entropy is reduced by the code rate r of the ECC due to
information leakage of the helper data. In contrast, when
using a Hash function, which is one of the vetted condi-
tioning functions defined by NIST SP 800-90B, the
entropy for a k-bit Hash function output (hout) can be
estimated [24]. Furthermore, full-entropy output bits,
that is, hout ¼ k, can be produced when the input entropy
hin is at least c �k with a compression rate of the Hash
function c≥ 2. Otherwise, the output entropy is lower.

Specifically, let us reconsider the hardware security
source model from an entropy perspective, as shown in
Figure 7. Assuming that k-bit output is generated with
full-entropy, we consider the debiasing method with
dropping rate d, the ECC with code rate r, and the Hash
function with compression rate c. If the min-entropy per
bit at the response bit stream is hmin, the output entropy
at the ECC or the input entropy at the Hash function
would be hin ¼ r �n �d �hmin: For full-entropy require-
ments, hin should be at least c �k, so the minimum num-
ber of bits for the extracted raw response, denoted as n, is
given by

n¼ c �k
r �d �hmin

, ð3Þ

where the minimum possible c is 2.
Then, we applied (3) to the proposed flash PUF to

evaluate how many raw response bits are required for the
full-entropy 256 output bits. Based on the experiments
described in Section 4, hmin ¼ 0:87, as in Table 1, and
d¼ 0:09. The used ECC is the convolutional code with
r¼ 1=3 and memory length 6, which corrects errors up to
IC¼ 15% [34]. The required number of raw response bits
is then calculated as n¼ 19 Kbits. Therefore, if 19 Kbits
raw response are extracted from the flash PUF, the final
256-bit output of the Hash function (e.g., SHA-256) is
guaranteed to have full-entropy, which can be used as a
successful cryptographic key for IoT devices.

5.1 | Security analysis

Facilitated by the proposed flash PUF and its correspond-
ing ECC and Hash function, a full-entropy 256-key is
obtained at the output in the hardware security source
model. Therefore, an attacker can decode the encrypted
data only with a brute force attack. As the resources
required for brute force attacks grow exponentially with
increasing key size (i.e., 2k), the 256-bit key generated by
the proposed PUF is considered computationally secure
against brute force attacks.

6 | CONCLUSION

In this paper, we presented a flash-based hardware secu-
rity primitive for cryptographic key generation for IoT
devices. Relying on variability of tunneling electrons in
the FG during the erasing process, we proposed a flash
PUF construction using a one-time P/E cycle. Moreover,
the adaptive PUF extraction algorithm was shown to be
robust for various operating conditions, such as tempera-
ture and timing variations. The easy multiple readout
capability provided by our flash PUF results in enhanced
reliability over a variable random behavior. Experimental
results using COTS memory chips confirmed the excel-
lent performance of the PUF in terms of uniqueness,
steadiness, uniformity, and randomness. Because the pro-
posed flash PUF enables the generation of credentials or
keys for resource-constrained IoT devices at any time
without hardware modification, security threats to IoT
environments can be reduced by an easily adopted secu-
rity framework. Future works will include performance
evaluation of the proposed flash PUF with various flash
devices.
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