• Title/Summary/Keyword: Physical Measurements

Search Result 1,761, Processing Time 0.027 seconds

Development of Success Attribution Scale for Body Guard in Korea (한국 경호원의 성공귀인 측정도구 개발)

  • Kim, Sang Jin
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.173-183
    • /
    • 2017
  • This study is for presenting the factors about success attribution that fit the korean security service conditions and developing the actual analysis of measurement tools by investigating the success factors of the security service agents. To this end, conducted a meeting from the fully open questionnaire at first, and then formed the semi-structured questionnaire, finally carried out the survey from the closed questionnaire and analyzed data from SPSS 21.0, AMOS 21.0 and developed the measurements. It was conducted from December, 2014 to June, 2015. This survey was conducted of 170 security guards after the verification of the content validity though the pilot survey and presented the success attribution factors and standards on the basis of the result form this survey. At the first and second analysis process, the success attribution factors of the guards consisted of inner qualities, external qualities, induction factors for inner qualities, and induction factor for external qualities. On analysis of the final data and documents, however, at the third analysis, the success attribution factors of the guards consisted of 'martial arts and physical ability'(4 questions), 'attitudes to work'(3 questions), 'support for the working environment'(3 questions), 'organized business skills'(3 questions), 'attitudes to the duty'(3 questions), and 'coping with crises(2 questions).

Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon (쌀밥으로 제조된 활성탄을 사용하는 전기이중층형 슈퍼커패시터 전극의 전기화학적 특성)

  • Jo, Un;Kim, Yong-Il;Yoon, Jae-Kook;Yoo, Jung-Joon;Yoon, Ha-Na;Kim, Sung-Soo;Kim, Jong-Huy
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • From the cooked-rice as a raw material, activated carbons throughout a hydrothermal synthesis and vacuum soak of KOH for chemical activation were obtained. Activated carbon electrodes for electric double layer supercapacitors were prepared and electrochemical characteristics were examined. Including the specific surface area by BET method and pore size distribution by NLDFT method, physical properties of activated carbons were investigated by means of SEM, EDS, XRD, and TG analyses. Cycle voltammetry and AC-impedance measurements were conducted to confirm the electrochemical characteristics for the electrodes. From hydrothermal synthesis, $5{\sim}7{\mu}m$ diameters of spherical carbons were obtained. After the activation at $800^{\circ}C$, it was notable for the activated carbon to be the specific surface $1631.8cm^2/g$, pore size distribution in 0.9~2.1 nm, and micro-pore volume $0.6154cm^3/g$. As electrochemical characteristics of the activated carbon electrode in 6M KOH electrolyte, it was confirmed that the specific capacitances of 236, 194, and 137 F/g at the scan rate of 5, 100, and 500 mV/s respectively were exhibited and 91.2% of initial capacitance after 100,000 cycles at 200 mV/s was maintained.

Estimation of Theoretical and Technical Potentials of Geothermal Power Generation using Enhanced Geothermal System (우리나라 EGS 지열발전의 이론적 및 기술적 잠재량 평가)

  • Song, Yoon-Ho;Baek, Seung-Gyun;Kim, Hyoung-Chan;Lee, Tae-Jong
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.513-523
    • /
    • 2011
  • We estimated geothermal power generation potential in Korea through Enhanced Geothermal System (EGS) technology following the recently proposed protocol which was endorsed by international organizations. Input thermal and physical data for estimation are density, specific heat and thermal conductivity measurements from 1,516 outcrop samples, 180 heat production, 352 heat flow, and 52 mean surface temperature data. Inland area was digitized into 34,742 grids of $1'{\times}1'$ size and temperature distribution and available heat were calculated for 1 km depth interval from 3 km down to 10 km. Thus estimated theoretical potential reached 6,975 GW which is 92 times total generation capacity of Korea in 2010. Technical potential down to 6.5 km and considering land accessibility, thermal recovery ratio of 0.14 and temperature drawdown factor of $10^{\circ}C$ was 19.6 GW. If we disregard temperature drawdown factor, which can be considered in estimating economic potential, the technical potential increases up to 56 GW.

Deposition Velocity of Iodine Vapor ($(I_2)$) for Radish Plants and Its Root-Translocation Factor : Results of Experimental Exposures (요오드 증기($I_2$)의 무 작물체에 대한 침적속도 및 뿌리 전류계수 : 피폭실험 결과)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Park, Doo-Won;Keum, Dong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.151-158
    • /
    • 2010
  • In order to measure the deposition velocity of $I_2$ vapor for radish plants and its translocation factor for their roots, radish plants were exposed to $I_2$ vapor for 80 min. at different growth stages between 29 and 53 d after sowing. The exposure was performed in a transparent chamber during the morning time. Deposition velocities ($ms^{-1}$) were on the whole in the range of $1.0{\times}10^{-4}{\sim}2.0{\times}10^{-4}$ showing an increasing tendency with an increase in the biomass density. The results showed some agreement with existing reports that a higher relative humidity would lead to a higher deposition velocity. The acquired deposition velocities were lower than by factors of several tens than some field measurements probably due to a very low wind speed (about $0.2\;ms^{-1}$) in the chamber. Translocation factors (ratio of the total iodine in the roots at harvest to the total plant deposition), estimated in a more or less conservative way, were $1.3{\times}10^{-3}$ for an exposure at 29 d after sowing and $5.0{\times}10^{-3}$ for an exposure at 53 d after sowing. In using the present experimental data, meteorological conditions and chemical and physical forms of iodine need to be carefully considered.

THE MICROHARDNESS AND THE DEGREE OF CONVERSION OF LIGHT CURED COMPOSITE RESIN AND DUAL CURED RESIN CEMENTS UNDER PORCELAIN INLAY (도재인레이 하방에서 광중합형 복합레진과 이중중합형 복합레진시멘트의 미세경도와 중합률에 관한 연구)

  • Kim, Seung-Soo;Cho, Sung-Sik;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.17-40
    • /
    • 2000
  • Resin cements are used for cementing indirect esthetic restorations such as resin or porcelain inlays. Because of its limitations in curing of purely light cured resin cements due to attenuation of the curing light by intervening materials, dual cured resin cements are recommended for cementing restorations. The physical properties of resin cements are greatly influenced by the extent to which a resin cures and the degree of cure is an important factor in the success of the inlay. The purpose of this study was to evaluate the influence of porcelain thickness and exposure time on the polymerization of resin cements by measuring the microhardness and the degree of conversion, to investigate the nature of the correlation between two methods mentioned above, and to determine the exposure time needed to harden resin cements through various thickness of porcelain. The degree of resin cure was evaluated by the measurements of microhardness [Vickers Hardness Number(VHN)] and degree of conversion(DC), as determined by Fourier Transform Infrared Spectroscopy(FTIR) on one light cured composite resin [Z-100(Z)] and three dual cured resin cements [Duo cement(D), 3M Resin cement(R), and Dual cement(DA)] which were cured under porcelain discs thickness of 0mm, 1mm, 2mm, 3mm with light exposure time of 40sec, 80sec, 120sec, and regression analysis was performed to determine the correlation between VHN and DC. In addition, to determine the exposure time needed to harden resin cements under various thickness of porcelain discs, the changes of the intensity of light attenuated by 1mm, 2mm, and 3mm thickness of porcelain discs were measured using the curing radiometer. The results were obtained as follows ; 1. The values of microhardness and the degree of conversion of resin cements without intervening porcelain discs were 31~109VHN and 51~63%, respectively. In the microhardness Z was the highest, followed by R, D, DA. In the degree of conversion, D and DA was significantly greater than Z and R(p<0.05). 2. The microhardness and the degree of conversion of the resin cements decreased with increasing thickness of porcelain discs, and increased with increasing exposure time, D and R showed great variation with inlay thickness and exposure time, whereas, DA showed a little variation. 3. The intensity of light through 1mm, 2mm, and 3mm porcelain inlays decreased by 0.43, 0.25, and 0.14 times compared to direct illumination, and the respective needed exposure times are 53 sec, 70 sec, and 93 sec. In D and R, 40 sec of light irradiation through 2mm porcelain disc and 80 sec of light irradiation through 3mm porcelain disc were not enough to complete curing. 4. The microhardness and the degree of conversion of the resin cements showed a positive correlationship(R=0.791~0.965) in the order of R, D, Z, DA. As the thickness of porcelain discs increased, the decreasing pattern of microhardness was different from that of the degree of conversion, however.

  • PDF

Analysis of the Threshold Voltage Instability of Bottom-Gated ZnO TFTs with Low-Frequency Noise Measurements (Low-Frequency Noise 측정을 통한 Bottom-Gated ZnO TFT의 문턱전압 불안정성 연구)

  • Jeong, Kwang-Seok;Kim, Young-Su;Park, Jeong-Gyu;Yang, Seung-Dong;Kim, Yu-Mi;Yun, Ho-Jin;Han, In-Shik;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.545-549
    • /
    • 2010
  • Low-frequency noise (1/f noise) has been measured in order to analyze the Vth instability of ZnO TFTs having two different active layer thicknesses of 40 nm and 80 nm. Under electrical stress, it was found that the TFTs with the active layer thickness of 80 nm shows smaller threshold voltage shift (${\Delta}V_{th}$) than those with thickness of 40 nm. However the ${\Delta}V_{th}$ is completely relaxed after the removal of DC stress. In order to investigate the cause of this threshold voltage instability, we accomplished the 1/f noise measurement and found that ZnO TFTs exposed the mobility fluctuation properties, in which the noise level increases as the gate bias rises and the normalized drain current noise level($S_{ID}/{I_D}^2$) of the active layer of thickness 80 nm is smaller than that of active layer thickness of thickness 40 nm. This result means that the 80 nm thickness TFTs have a smaller density of traps. This result correlated with the physical characteristics analysis performmed using XRD, which indicated that the grain size increases when the active layer thickness is made thicker. Consequently, the number of preexisting traps in the device increases with decreasing thickness of the active layer and are related closely to the $V_{th}$ instability under electrical stress.

Characteristics of the Regional Rock Stress Field at Shallow Depth in the Kyungsang Basin with In-situ Rock Stress Measurement (현장 측정을 통한 경상분지의 천부 초기응력장 특성에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Kim, Jae-Min;Kim, Jang-Soon
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.149-161
    • /
    • 2008
  • It is nearly impossible to estimate the exact state of the current rock stress of interest site by the theoretical and physical approaches except some specific geological situations. This means that in-situ stress measurement is a unique way to obtain reliable information on rock stress especially for civil and mining engineering related problems. Since late in the 90's, in-situ rock stress tests have been widely conducted to provide the quantitative information on the stress state of engineering site at the design stage of an underground rock structure in the Kyungsang Basin, Korea. The study area is the near surface regions at the depth less than 300 m in the Kyungsang Basin. It includes Yeosoo to the west and Busan to the east. Totally, 270 in-situ stress measurements were conducted in the surface test boreholes at the depth from 14 m to 300 m by hydraulic fracturing method. In this paper, based on the measurement data set, the overall characteristics of the current in-situ rock stress fields in the study area are briefly described. And also the investigation results on the difference between the stress distributions for the granitoid and the andesitic rock region are also introduced. Finally, the distributions of the regional horizontal stress directions in Busan and the Yangsan faults area are shown.

Determination of Free 4-hydroxyproline with Dansylchloride by HPLC in Human Urine (소변 중 4-hydroxyproline 분석에 관한 연구)

  • Lee, Keou-Weon;Cho, Young-Bong;Lee, Kyung-Jong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.4
    • /
    • pp.282-286
    • /
    • 2002
  • Objectives : The level of 4-hydroxyproline (4-Hyp) in human urine was measured using high performance liquid chromatography (HPLC) with a fluorescence detector. This method is useful for medical examinations and investigating the radicals induced by physical, chemical, mental stresses. This method is superior to many published several methods in terms of its low cost and ability to analyze many samples. Methods : The urine from workers in a tire manufacturing company (22 male pre- and post-shift workers) and 18 office-workers as controls were analyzed. Data concerning age, the cumulative drinking amount and the cumulative smoking amount was collected with a questionnaire. The optimum applied amount of dansyl-Cl, the optimum reaction temperature and time, the recoveries and the optimum pH of the eluent and buffer were determined.4-Hyp from human urine was derivatized with dansyl-Cl (dimethylamino-naphthalene-1-sulfonyl chloride) after removing the a-amino acid by a treatment with phthalic dicarboxaldehyde (OPA) and cleaned with Bond Elut C18 column. The 4-Hyp derivatives were separated on a reversed phase column by gradient elution with a phosphate buffer (5 mmol, pH 8.0) and acetonitrile, and detected by fluorescence measurements at 340 nm (excitation) and 538 nm (emission). Results : The detection limit for the urinary free 4-Hyp was $0.364{\mu}mol/l$. The recovery rate of 4-Hyp was 99.7%, and the effective pH of the phosphate buffer and borate buffer were 3.0 and 8.0, respectively. From statistical analysis, age, drinking and smoking did not affect the urinary free 4-Hyp in both the controls and workers. The range of urinary 4-Hyp in the controls, pre-shift, and post-shift workers were 0.33-16.44, N.D-49.06, and $0.32-56.27{\mu}mol/l$. From the pared-sample t-test, the urinary 4-Hyp levels in post-shift workers ($11.82{\pm}6.73\;nmmol/mg\;Cre$) were 2-fold higher than in pre-shift workers ($5.36{\pm}5.53\;nmol;/mg\;Cre$) and controls ($4.91{\pm}4.89\;nmol;/mg\;Cre$). Conclusions : This method was developed with high sensitivity, accuracy, and precision. The present method was effectively applied to analyze the urinary free 4-Hyp in both controls and workers.

The Effect of Squat Exercise According to Ankle Angle-Toe 0°, Toe In 10°, Toe Out 10°-on Muscle Thickness and Ground Reaction Force of Vastus Medialis Oblique and Vastus Lateralis Oblique Muscles (발목각도 Toe 0°, Toe in 10°, Toe out 10°에 따른 스쿼트 운동이 안쪽넓은근과 가쪽넓은근의 근두께와 지면반발력에 미치는 영향)

  • Ahn, Su-Hong;Lee, Su-Kyong
    • PNF and Movement
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the differences in muscle thickness and ground reaction force of the vastus medialis oblique and vastus lateral oblique muscles during squats at ankle angles of toe 0°, toe in 10°, and toe out 10°. Methods: In this study, 9 male and 17 female students in their 20s participated in a randomized controlled trial and were compared according to the ankle angles of toe 0°, toe in 10°, and toe out 10°. To determine the reliability and measurement of muscle thickness according to ankle angle using ultrasound equipment and muscle thickness, the participants' ankle angles-toe 0°, toe in 10°, and toe out 10°-were measured three times at the vastus medialis oblique and vastus lateralis oblique muscles during squats. At the same time, the maximum vertical ground reaction force was measured with a force plate. A total of three measurements were taken and averaged, and two minutes of squat movements were assessed between ankle angles to prevent target action. Results: The results of this study illustrated that the reliability of the vastus medialis oblique muscles and vastus lateralis oblique muscles in ankle angle was high. The difference in muscle thickness was significantly greater in comparing the toe out 10° angle with the toe 0° angle than between toe in 10° and toe out 10° in vastus medialis oblique and vastus lateralis oblique (p < 0.05). There was no statistically significant difference between the ankle angle of toe 0° and toe in 10° (p > 0.05). The maximum vertical ground reaction force was significantly greater at toe out 10° than at the ankle angle of toe 0° and toe out 10° and between toe in 10° and toe out 10° (p < 0.05). There was no statistically significant difference in the comparison between toe 0° and toe in 10° (p > 0.05). Conclusion: Squatting at an ankle angle of toe out 10° increases the dorsi flexion; thus, the stability of the ankle and the thickness of both oblique muscles increased to perform more effective squats. In addition, as the base of support widens, it is thought that the stability of the posture increases so that squat training can be performed safely.

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.