• Title/Summary/Keyword: Phylogenetic study

Search Result 1,390, Processing Time 0.041 seconds

Serological and Molecular Detection of Toxoplasma gondii and Babesia microti in the Blood of Rescued Wild Animals in Gangwon-do (Province), Korea

  • Hong, Sung-Hee;Kim, Hee-Jong;Jeong, Young-Il;Cho, Shin-Hyeong;Lee, Won-Ja;Kim, Jong-Tak;Lee, Sang-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.207-212
    • /
    • 2017
  • Infections of Toxoplasma gondii and Babesia microti are reported in many wild animals worldwide, but information on their incidence and molecular detection in Korean wild fields is limited. In this study, the prevalence of T. gondii and B. microti infection in blood samples of 5 animal species (37 Chinese water deer, 23 raccoon dogs, 6 roe deer, 1 wild boar, and 3 Eurasian badgers) was examined during 2008-2009 in Gangwon-do (Province), the Republic of Korea (=Korea) by using serological and molecular tests. The overall seropositivity of T. gondii was 8.6% (6/70); 10.8% in Chinese water deer, 4.3% in raccoon dogs, and 16.7% in roe deer. PCR revealed only 1 case of T. gondii infection in Chinese water deer, and phylogenic analysis showed that the positive isolate was practically identical to the highly pathogenetic strain type I. In B. microti PCR, the positive rate was 5.7% (4/70), including 2 Chinese water deer and 2 Eurasian badgers. Phylogenetic analysis results of 18S rRNA and the ${\beta}$-tubulin gene showed that all positive isolates were US-type B. microti. To our knowledge, this is the first report of B. microti detected in Chinese water deer and Eurasian badger from Korea. These results indicate a potentially high prevalence of T. gondii and B. microti in wild animals of Gangwon-do, Korea. Furthermore, Chinese water deer might act as a reservoir for parasite infections of domestic animals.

Comparison of the complete chloroplast genome sequence of Solanum stoloniferum with other Solanum species generates PCR-based markers specific for Solanum stoloniferum (엽록체 전장유전체 정보를 이용한 감자 야생종 Solanum stoloniferum 구별 분자 마커 개발)

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • Solanum stoloniferum, one of the wild tetraploid Solanum species belonging to the Solanaceae family, is an excellent resource for potato breeding owing to its resistance to several important pathogens. However, the sexual hybridization of S. stoloniferum with S. tuberosum (potato) is hampered due to the sexual incompatibility between the two species. To overcome this and introgress the various novel traits of S. stoloniferum in cultivated potatoes, cell fusion can be performed. The identification of the fusion products is crucial and can be achieved with the aid of molecular markers. In this study, the chloroplast genome sequence of S. stoloniferum was obtained by next-generation sequencing technology, and compared with that of six other Solanum species to identify S. stoloniferum-specific molecular markers. The length of the complete chloroplast genome of S. stoloniferum was found to be 155,567 bp. The structural organization of the chloroplast genome of S. stoloniferum was similar to that of the six other Solanum species studied. Phylogenetic analysis of S. stoloniferum with nine other Solanaceae family members revealed that S. stoloniferum was most closely related to S. berthaultii. Additional comparison of the complete chloroplast genome sequence of S. stoloniferum with that of five Solanum species revealed the presence of six InDels and 39 SNPs specific to S. stoloniferum. Based on these InDels and SNPs, four PCR-based markers were developed to differentiate S. stoloniferum from other Solanum species. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. stoloniferum.

Distribution of Human Rotavirus Genotypes in a Tertiary Hospital, Seoul, Korea During 2009-2013 (2009년부터 2013년까지 서울의 일개 대학병원에서 동정된 로타바이러스 유전형의 분포)

  • Han, Tae Hee;Park, Sang-Hun;Chung, Ju-Young;Hwang, Eung-Soo
    • Pediatric Infection and Vaccine
    • /
    • v.22 no.2
    • /
    • pp.81-90
    • /
    • 2015
  • Purpose: Group A rotavirus (RV) is most common etiologic agent of acute gastroenteritis (AGE) in children worldwide. Recently, vaccination has been introduced in several countries to reduce the disease burden caused by RV infections, but continuous surveillance of RV strains is necessary to detect the emergence of potential variants induced by vaccine-immune pressure. This study aimed to investigate the changing pattern of RV genotypes in children with AGE, following the introduction of vaccination in Korea. Methods: Genotyping of RVs by RT-PCR on the basis of VP7 and VP4 gene segment sequence was carried out on 201 rotavirus-positive stool samples, from children hospitalized with AGE between August 2009 and June 2013. We have directly sequenced PCR products and analyzed the phylogenetic tree. Results: The most prevalent G genotype was G9 (33.3%), followed by G1 (22.4%), G3 (15.9%), G2 (6.0%), G4 (3.0%), G10 (1.5%), and mixed G-type (15.4%), with some nontypeable cases (2.5%). The detected P genotypes were P[4] (45.3%), P[8] (43.8%), mixed P-type (10.4 %), and P[2] (0.5%). The G9P[4] genotype was predominantly observed in hospitalized cases in Seoul in 2010/2011, however G1P[8] has been re-emerged as the predominant genotype in the following season (P =0.004). Conclusions: It seems that the periodic fluctuation in predominance of the G1, G3, and G9 strains occurred in Korea during 2009-2013, following the introduction of RV vaccination.

Symbiobacterium toebii Sp. nov., Commensal Thermophile Isolated from Korean Compost

  • Sung, Moon-Hee;Bae, Jin-Woo;Kim, Joong-Jae;Kim, Kwang;Song, Jae-Jun;Rhee, Sung-Keun;Jeon, Che-Ok;Choi, Yoon-Ho;Hong, Seung-Pyo;Lee, Seung-Goo;Ha, Jae-Suk;Kang, Gwan-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1013-1017
    • /
    • 2003
  • A thermophilic nonspore-forming rod isolated from hay compost in Korea was subjected to a taxonomic study. The microorganism, designated as $SC-1^T$, was identified as a nitrate-reducing and nonmotile bacterium. Although the strain was negatively Gram-stained, a KOH test showed that the strain $SC-1^T$ belonged to a Gram-positive species. Growth was observed between 45 and $70^{\circ}C$. The optimal growth temperature and pH were $60^{\circ}C$ and pH 7.5, respectively. The G+C content of the genomic DNA was 65 mol% and the major quinone types were MK-6 and MK-7. A phylogenetic analysis based on 16S rDNA sequences revealed that the strain $SC-1^T$ was most closely related to Symbiobacterium thermophilum. However, the level of DNA-DNA relatedness between strain $SC-1^T$ and the type strain for Symbiobacterium thermophilum was approximately 30%. Accordingly, on the basis of the phenotypic traits and molecular systematic data, the strain $SC-1^T$ would appear to represent a new species within the genus Symbiobacterium. The type strain for the new species is named $SC-1^T$ ($=KCTC\;0307BP^T;\;DSM15906^T$).

Trametes villosa Lignin Peroxidase (TvLiP): Genetic and Molecular Characterization

  • Carneiro, Rita Terezinha de Oliveira;Lopes, Maiza Alves;Silva, Marilia Lordelo Cardoso;Santos, Veronica da Silva;Souza, Volnei Brito de;Sousa, Aurizangela Oliveira de;Pirovani, Carlos Priminho;Koblitz, Maria Gabriela Bello;Benevides, Raquel Guimaraes;Goes-Neto, Aristoteles
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.179-188
    • /
    • 2017
  • White-rot basidiomycetes are the organisms that decompose lignin most efficiently, and Trametes villosa is a promising species for ligninolytic enzyme production. There are several publications on T. villosa applications for lignin degradation regarding the expression and secretion of laccase and manganese peroxidase (MnP) but no reports on the identification and characterization of lignin peroxidase (LiP), a relevant enzyme for the efficient breakdown of lignin. The object of this study was to identify and partially characterize, for the first time, gDNA, mRNA, and the corresponding lignin peroxidase (TvLiP) protein from T. villosa strain CCMB561 from the Brazilian semiarid region. The presence of ligninolytic enzymes produced by this strain grown in inducer media was qualitatively and quantitatively analyzed by spectrophotometry, qPCR, and dye fading using Remazol Brilliant Blue R. The spectrophotometric analysis showed that LiP activity was higher than that of MnP. The greatest LiP expression as measured by qPCR occurred on the $7^{th}$ day, and the ABSA medium (agar, sugarcane bagasse, and ammonium sulfate) was the best that favored LiP expression. The amplification of the TvLiP gene median region covering approximately 50% of the T. versicolor LPGIV gene (87% identity); the presence of Trp199, Leu115, Asp193, Trp199, and Ala203 in the translated amplicon of the T. villosa mRNA; and the close phylogenetic relationship between TvLiP and T. versicolor LiP all indicate that the target enzyme is a lignin peroxidase. Therefore, T. villosa CCMB561 has great potential for use as a LiP, MnP, and Lac producer for industrial applications.

Characterization of Microbial Nitrate Uptake by Bacillus sp. PCE3 (Bacillus sp. PCE3 균주에 의한 질산이온 흡수 특성)

  • Yun, Yeong-Bae;Park, Soo-Jin;Han, Min-Woo;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.241-244
    • /
    • 2013
  • Nitrate is one of the major nutrients in plants, and nitrate fertilizer often overused for the high yields of crops. Nitrate deposit in soil became one of the major reasons causing salt stress. Specially, salt stress is a serious problem in the soils of plastic film or glass houses. In this study, six microorganisms have been isolated from the wet soils near the disposals of livestock farms and their nitrate uptake activities were investigated. These bacteria were able to remove nitrate as high as 1,000-3,000 ppm (10-50 mM). The strain PCE3 showed the highest nitrate uptake activity and it removed more than 3,700 ppm. In order to identify these bacteria, genes of 16S rRNA were sequenced and analyzed. Phylogenetic trees were constructed with the neighbor-joining methods. Among these bacteria, strain PCE3 was identified as Bacillus species. When the growth and nitrate uptake activities were measured, both were maximal at $37^{\circ}C$ and optimal pH was pH 7-9. Bacillus sp. PCE3 removed nitrate up to 40-60 mM (2,500-3,700 ppm) depending on the nitrate concentration in media. Therefore, Bacillus sp. PCE3 can be a good candidate for the microbial remediation of nitrate-deposited soils in glass and plastic film houses.

Isolation and identification of a tricin 4"-O-(threo-β-guaiacylglyceryl) ether producing microorganism from germinated rice (발아 벼로부터 tricin 4"-O-(threo-β-guaiacylglyceryl) ether 생성균주의 분리 및 동정)

  • Yoon, Nara;Jang, Gwi Yeong;Lee, Yoon Jeong;Li, Meishan;Kim, Min Young;Kim, Hyun Young;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.361-365
    • /
    • 2016
  • This study was conducted to isolate and identify a microorganism that increases tricin-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) content in the hulls of rice (Oryza sativa L.). Bacteria from germinated rice were isolated by enrichment cultivation using yeast mold, luria bertani, potato dextrose and mannitol egg york polymyxin broths. The highest increase in TTGE content ($339.30{\mu}g/g$) was achieved by a microorganism isolated by PDA enrichment cultivation. On the basis of 16S RNA sequence homology and phylogenetic analysis, the isolated bacterium was identified to have 100% similarity with Burkholderia vietnamiensis. The isolated bacteria were short rods, negative for the Gram stain, and positive for the catalase test. The highest TTGE level was $435.86{\mu}g/g$ in 72-h fermented samples, representing a 2.5x increase compared with the control ($175.65{\mu}g/g$). In conclusion, the bacterium isolated from germinated rice extract was Burkholderia vietnamiensis, and the optimum fermentation period to maximize TTGE levels was 72 h. These findings might help in developing functional materials using rice hulls, a waste product of rice milling.

Characterizing LipR from Pseudomonas sp. R0-14 and Applying in Enrichment of Polyunsaturated Fatty Acids from Algal Oil

  • Yang, Wenjuan;Xu, Li;Zhang, Houjin;Yan, Yunjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1880-1893
    • /
    • 2015
  • In this study, Pseudomonas R0-14, which was isolated from Arctic soil samples, showed a clear halo when grown on M9 medium agarose plates containing olive oil-rhodamine B as substrate, suggesting that it expressed putative lipase(s). A putative lipase gene, lipR, was cloned from R0-14 by genome walking and Touchdown PCR. lipR encodes a 562-amino-acid polypeptide showing a typical α/β hydrolase structure with a catalytic triad consisting of Ser153-Asp202-His260 and one α-helical lid (residues 103-113). A phylogenetic analysis revealed that LipR belongs to the lipase subfamily I.3. LipR was successfully expressed in Escherichia coli, purified, and biochemically characterized. Recombinant LipR exhibited its maximum activity towards p-nitrophenyl butyrate at pH 8.5 and 60℃ with a Km of 0.37 mM and a kcat of 6.42 s-1. It retained over 90% of its original activity after incubation at 50℃ for 12 h. In addition, LipR was activated by Ca2+, Mg2+, Ba2+, and Sr2+, while strongly inhibited by Cu2+, Zn2+, Mn2+, and ethylenediaminetetraacetic acid. Moreover, it showed a certain tolerance to organic solvents, including acetonitrile, isopropanol, acetone, methanol, and tert-butanol. When algal oil was hydrolyzed by LipR for 24 h, there was an enrichment of n-3 long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (1.22%, 1.65-fold), docosapentaenoic acid (21.24%, 2.04-fold), and docosahexaenoic acid (36.98%, 1.33-fold), and even a certain amount of diacylglycerols was also produced. As a result, LipR has great prospect in industrial applications, especially in food and/or cosmetics applications.

Antifouling Activity towards Mussel by Small-Molecule Compounds from a Strain of Vibrio alginolyticus Bacterium Associated with Sea Anemone Haliplanella sp.

  • Wang, Xiang;Huang, Yanqiu;Sheng, Yanqing;Su, Pei;Qiu, Yan;Ke, Caihuan;Feng, Danqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.460-470
    • /
    • 2017
  • Mussels are major fouling organisms causing serious technical and economic problems. In this study, antifouling activity towards mussel was found in three compounds isolated from a marine bacterium associated with the sea anemone Haliplanella sp. This bacterial strain, called PE2, was identified as Vibrio alginolyticus using morphology, biochemical tests, and phylogenetic analysis based on sequences of 16S rRNA and four housekeeping genes (rpoD, gyrB, rctB, and toxR). Three small-molecule compounds (indole, 3-formylindole, and cyclo (Pro-Leu)) were purified from the ethyl acetate extract of V. alginolyticus PE2 using column chromatography techniques. They all significantly inhibited byssal thread production of the green mussel Perna viridis, with $EC_{50}$ values of $24.45{\mu}g/ml$ for indole, $50.07{\mu}g/ml$ for 3-formylindole, and $49.24{\mu}g/ml$ for cyclo (Pro-Leu). Previous research on the antifouling activity of metabolites from marine bacteria towards mussels is scarce. Indole, 3-formylindole and cyclo (Pro-Leu) also exhibited antifouling activity against settlement of the barnacle Balanus albicostatus ($EC_{50}$ values of 8.84, 0.43, and $11.35{\mu}g/ml$, respectively) and the marine bacterium Pseudomonas sp. ($EC_{50}$ values of 42.68, 69.68, and $39.05{\mu}g/ml$, respectively). These results suggested that the three compounds are potentially useful for environmentally friendly mussel control and/or the development of new antifouling additives that are effective against several biofoulers.

Characterization of Multifunctional Bacillus sp. GH1-13 (복합기능성 Bacillus sp. GH1-13 균주의 특징)

  • Kim, Sang Yoon;Sang, Mee Kyung;Weon, Hang-Yeon;Jeon, Young-Ah;Ryoo, Jae Hwan;Song, Jaekyeong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2016
  • Several microorganisms in particular Bacillus subtilis group have been isolated from diverse places such as soils and the gastrointestinal tract of ruminants etc., and used as biocontrol agent against various plant pathogens and utilized as plant growth promoting agents. Among them, Bacillus is well known as one of the most useful bacteria for biocontrol and plant growth promotion. Bacterium GH1-13 was isolated from a reclaimed paddy field in Wando Island and identified as Bacillus velezensis using phylogenetic analysis on the basis of 16S rRNA and gyrB gene. It was confirmed that GH1-13 produced indole acetic acid (IAA) associated with promoted growth of rice root. GH1-13 showed characteristics of antagonization against the main pathogen of rice as well as diverse pathogenic fungi. GH1-13 had biosynthetic genes, bacillomycin, bacilycin, fengycin, iturin, and surfactin which are considered to be associated closely with inhibition of growth of pathogenic fungi and bacteria. This study showed that GH1-13 could be used as a multifunctional agent for biocontrol and growth promotion of crop.