DOI QR코드

DOI QR Code

Antifouling Activity towards Mussel by Small-Molecule Compounds from a Strain of Vibrio alginolyticus Bacterium Associated with Sea Anemone Haliplanella sp.

  • Wang, Xiang (State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University) ;
  • Huang, Yanqiu (State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University) ;
  • Sheng, Yanqing (State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University) ;
  • Su, Pei (State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University) ;
  • Qiu, Yan (Medical College, Xiamen University) ;
  • Ke, Caihuan (State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University) ;
  • Feng, Danqing (State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University)
  • Received : 2016.07.28
  • Accepted : 2016.11.21
  • Published : 2017.03.28

Abstract

Mussels are major fouling organisms causing serious technical and economic problems. In this study, antifouling activity towards mussel was found in three compounds isolated from a marine bacterium associated with the sea anemone Haliplanella sp. This bacterial strain, called PE2, was identified as Vibrio alginolyticus using morphology, biochemical tests, and phylogenetic analysis based on sequences of 16S rRNA and four housekeeping genes (rpoD, gyrB, rctB, and toxR). Three small-molecule compounds (indole, 3-formylindole, and cyclo (Pro-Leu)) were purified from the ethyl acetate extract of V. alginolyticus PE2 using column chromatography techniques. They all significantly inhibited byssal thread production of the green mussel Perna viridis, with $EC_{50}$ values of $24.45{\mu}g/ml$ for indole, $50.07{\mu}g/ml$ for 3-formylindole, and $49.24{\mu}g/ml$ for cyclo (Pro-Leu). Previous research on the antifouling activity of metabolites from marine bacteria towards mussels is scarce. Indole, 3-formylindole and cyclo (Pro-Leu) also exhibited antifouling activity against settlement of the barnacle Balanus albicostatus ($EC_{50}$ values of 8.84, 0.43, and $11.35{\mu}g/ml$, respectively) and the marine bacterium Pseudomonas sp. ($EC_{50}$ values of 42.68, 69.68, and $39.05{\mu}g/ml$, respectively). These results suggested that the three compounds are potentially useful for environmentally friendly mussel control and/or the development of new antifouling additives that are effective against several biofoulers.

Keywords

References

  1. Callow JA, Callow ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2: 244-253. https://doi.org/10.1038/ncomms1251
  2. Schultz M, Bendick J, Holm E, Hertel W. 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27: 87-98. https://doi.org/10.1080/08927014.2010.542809
  3. Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50: 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001
  4. Guerin T, Sirot V, Volatier JL, Leblanc JC. 2007. Organotin levels in seafood and its implications for health risk in highseafood consumers. Sci. Total Environ. 388: 66-77. https://doi.org/10.1016/j.scitotenv.2007.08.027
  5. van Wezel AP, van Wlaardingen P. 2004. Environmental risk limits for antifouling substances. Aquat. Toxicol. 66: 427-444. https://doi.org/10.1016/j.aquatox.2003.11.003
  6. Fusetani N. 2011. Antifouling marine natural products. Nat. Prod. Rep. 28: 400-410. https://doi.org/10.1039/C0NP00034E
  7. Qian PY, Xu Y, Fusetani N. 2010. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26: 223-234.
  8. Qian PY, Li Z, Xu Y, Li Y, Fusetani N. 2015. Marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. Biofouling 31: 101-122. https://doi.org/10.1080/08927014.2014.997226
  9. Dash S, Jin C, Lee OO, Xu Y, Qian PY. 2009. Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J. Ind. Microbiol. Biotechnol. 36: 1047-1056. https://doi.org/10.1007/s10295-009-0588-x
  10. Dobretsov S, Dahms HU, Qian PY. 2006. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22: 43-54. https://doi.org/10.1080/08927010500504784
  11. Dobretsov S, Xiong H, Xu Y, Levin LA, Qian PY. 2007. Novel antifoulants: inhibition of larval attachment by proteases. Mar. Biotechnol. 9: 388-397. https://doi.org/10.1007/s10126-007-7091-z
  12. He F, Han Z, Peng J, Qian PY, Qi SH. 2013. Antifouling indole alkaloids from two marine derived fungi. Nat. Prod. Commun. 8: 329-332.
  13. Shao CL, Xu RF, Wang CY, Qian PY, Wang KL, Wei MY. 2015. Potent antifouling marine dihydroquinolin-2(1H)-onecontaining alkaloids from the gorgonian coral-derived fungus Scopulariopsis sp. Mar. Biotechnol. 17: 408-415. https://doi.org/10.1007/s10126-015-9628-x
  14. Hosler DM. 2011. Early detection of dreissenid species: zebra/quagga mussels in water systems. Aquat. Invasions 6:217-222. https://doi.org/10.3391/ai.2011.6.2.10
  15. Jenner HA, Whitehouse JW, Taylor CJL, Khalanski M. 1998. Cooling water management in European power stations: biology and control of fouling. Hydroecol. Appl. 10: 1-225.
  16. Rajagopal S, Venugopalan VP, Van der Velde G, Jenner HA. 2003. Tolerance of five species of tropical marine mussels to continuous chlorination. Mar. Environ. Res. 55: 277-291. https://doi.org/10.1016/S0141-1136(02)00272-6
  17. Idaho Invasive Species Council. 2009. Estimated potential economic impact of zebra and quagga mussel introduction into Idaho. Available from http://www.aquaticnuisance.org/wordpress/wpcontent/uploads/2009/01/Estimated-Economic-Impact-of-Mussel-Introduction-to-Idaho-Final.pdf. Accessed Oct. 28, 2014.
  18. Rajagopal S, Van der Gaag M, Van der Velde G, Jenner HA. 2002. Control of brackish water fouling mussel, Mytilopsis leucophaeata (Conrad), with sodium hypochlorite. Arch. Environ. Contam. Toxicol. 43: 296-300. https://doi.org/10.1007/s00244-002-1203-6
  19. Allonier AS, Khalanski M, Camel V, Bermond A. 1999. Characterization of chlorination by-products in cooling effluents of coastal nuclear power stations. Mar. Pollut. Bull. 38: 1232-1241. https://doi.org/10.1016/S0025-326X(99)00168-X
  20. Kwong TFN, Miao L, Li X, Qian PY. 2006. Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. Mar. Biotechnol. 8: 634-640. https://doi.org/10.1007/s10126-005-6146-2
  21. Qi SH, Xu Y, Xiong HR, Qian PY, Zhang S. 2009. Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J. Microbiol. Biotechnol. 25: 399-406. https://doi.org/10.1007/s11274-008-9904-2
  22. Collins CH, Lyne PM, Grange JM. 1989. Collins and Lyne's Microbiological Methods. Butterworth, London & Boston.
  23. Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, et al. 2007. Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int. J. Syst. Evol. Microbiol. 57: 2327-2332. https://doi.org/10.1099/ijs.0.64783-0
  24. Smibert RM, Krieg NR. 1994. Phenotypic characterization, pp. 607-654. In Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C. USA.
  25. Bruns A, Rohde M, Berthe-Corti L. 2001. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int. J. Syst. Evol. Microbiol. 51: 1997-2006. https://doi.org/10.1099/00207713-51-6-1997
  26. Sambrook J, Fritsch EF, Maniatis TF. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York. USA.
  27. Pascual J, Macian MC, Arahal DR, Garay E, Pujalte MJ. 2010. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int. J. Syst. Evol. Microbiol. 60: 154-165. https://doi.org/10.1099/ijs.0.010702-0
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  29. Saitou N, Nei M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  30. Kumar S, Nei M, Dudley J, Tamura K. 2004. MEGA4: molecular evolutionary genetics analysis MEGA software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
  31. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  32. Van Winkle WV. 1970. Effects of environmental factors on byssal thread formation. Mar. Biol. 7: 143-148. https://doi.org/10.1007/BF00354918
  33. Rajagopal S, Venugopalan VP, van der Velde G, Jenner HA. 2003b. Response of fouling brown mussel, Perna perna ( L.), to chlorine. Arch. Environ. Contam. Toxicol. 44: 369-376. https://doi.org/10.1007/s00244-002-2098-y
  34. Hamilton MA, Russo RC, Thurston RV. 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11: 714-719. https://doi.org/10.1021/es60130a004
  35. Hamilton MA, Russo RC, Thurston RV. 1978. Correction to: Hamilton MA, Russo RC, Thurston RV. 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11: 714-719. Environ. Sci. Technol. 12: 417. https://doi.org/10.1021/es60140a017
  36. Reichelt-Brushett AJ, Michalek-Wagner K. 2005. Effects of copper on the fertilization success of the soft coral Lobophytum compactum. Aquat. Toxicol. 74: 280-284. https://doi.org/10.1016/j.aquatox.2005.05.011
  37. Feng DQ, Ke CH, Lu CY, Li SJ. 2009. Herbal plants as a promising source of natural antifoulants: evidence from barnacle settlement inhibition. Biofouling 25: 181-190. https://doi.org/10.1080/08927010802669210
  38. Kelly SR, Jensen PR, Henkel TP, Fenical W, Pawlik JR. 2003. Effects of Caribbena sponge extracts on bacterial attachment. Aquat. Microb. Ecol. 31: 175-182. https://doi.org/10.3354/ame031175
  39. Cano-Gomez A, Goulden EF, Owens L, Hoj L. 2010. Vibrio owensii sp. nov., isolated from cultured crustaceans in Australia. FEMS Microbiol. Lett. 302: 175-181. https://doi.org/10.1111/j.1574-6968.2009.01850.x
  40. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, et al. 2005. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microbiol. 71: 5107-5115. https://doi.org/10.1128/AEM.71.9.5107-5115.2005
  41. Devi P, Wahidullah S, Rodrigues C, Souza LD. 2010. The sponge-associated bacterium Bacillus licheniformis SAB1: a source of antimicrobial compounds. Mar. Drugs 8: 1203-1212. https://doi.org/10.3390/md8041203
  42. Zan K, Chen XQ, Fu Q, Zhou SX, Xiao MT, Wen J, Tu PF. 2010. Chemical ingredients isolated from the aerial parts of Artemisia anomala. J. Chin. Pharm. Sci. 19: 95-99.
  43. Kumar SN, Mohands C, Siji JV, Rajasekharan KN, Nambisan B. 2012. Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi. J. Appl. Microbiol. 113: 914-924. https://doi.org/10.1111/j.1365-2672.2012.05385.x
  44. Rittschof D. 2001. Natural product antifoulants and coatings developments, pp. 543-566. In McClintock JB, Baker BJ (eds.), Marine Chemical Ecology. CRC Press, Boca Raton. USA.
  45. Debbab A, Aly AH, Lin WH, Proksch P. 2010. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol. 3: 544-563. https://doi.org/10.1111/j.1751-7915.2010.00179.x
  46. Harder T, Dobretsov S, Qian PY. 2004. Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar. Ecol. Prog. Ser. 274: 133-141. https://doi.org/10.3354/meps274133
  47. Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. 2012. The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3: 292.
  48. Reichenbach H, Dworkin M. 1992. The Myxobacteria. 1992, pp. 3416-3487. In Balows A, Truper GH, Dworkin M, Harder W, Schleifer KH (eds.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identijication, Applications. Springer, New York. USA.
  49. Lee JH, Lee J. 2010. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34: 426-444. https://doi.org/10.1111/j.1574-6976.2009.00204.x
  50. Hu M, Zhang C, Mu Y, Shen Q, Feng Y. 2010. Indole affects biofilm formation in bacteria. Indian J. Microbiol. 50: 362-368. https://doi.org/10.1007/s12088-011-0142-1
  51. Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH. 2009. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J. Bacteriol. 191: 3504-3516. https://doi.org/10.1128/JB.01240-08
  52. Catala A. 2015. Indoleamines: Sources, Role in Biological Processes and Health Effects. Nova Science Publishers Inc., New York. USA.
  53. Biello SM, Dafters RI. 2001. MDMA and fenfluramine alter the response of the circadian clock to a serotonin agonist in vitro. Brain Res. 920: 202-209. https://doi.org/10.1016/S0006-8993(01)03070-0
  54. Yang C, Yu Y, Sun W, Xia C. 2014. Indole derivatives inhibited the formation of bacterial biofilm and modulated $Ca^{2+}$ efflux in diatom. Mar. Pollut. Bull. 88: 62-69. https://doi.org/10.1016/j.marpolbul.2014.09.027
  55. Wang KL, Xu Y, Lu L, Li Y, Han Z, Zhang J, et al. 2015. Low-toxicity diindol-3-ylmethanes as potent antifouling compounds. Mar. Biotechnol. 17: 624-632. https://doi.org/10.1007/s10126-015-9656-6
  56. Konya K, Shimidzu N, Adachi K, Miki W. 1994. 2,5,6-Tribromo-1-methylgramine, an antifouling substance from the marine bryozoan Zoobrotryon pellucidum. Fish. Sci. 60: 773-775.
  57. Olguin-Uribe G, Abou-Mansour E, Boulander A, Debard H, Francisco C, Combaut G. 1997. 6-Bromoindole-3-carbaldehyde, from an Acinetobacter sp. bacterium associated with the ascidian Stomozoa murrayi. J. Chem. Ecol. 23: 2507-2521. https://doi.org/10.1023/B:JOEC.0000006663.28348.03
  58. Penez N, Culioli G, Perez T, Briand JF, Thomas OP, Blache Y. 2011. Antifouling properties of simple indole and purine alkaloids from the Mediterranean gorgonian Paramuricea clavata. J. Nat. Prod. 74: 2304-2308. https://doi.org/10.1021/np200537v
  59. Kelecom A. 2002. Secondary metabolites from marine microorganisms. Ann. Brazil. Acad. Sci. 74: 151-170. https://doi.org/10.1590/S0001-37652002000100012
  60. Li X, Dobretsov S, Xu Y, Xiao X, Huang OS, Qian PY. 2006. Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22: 187-194. https://doi.org/10.1080/08927010600780771
  61. Nicholson B. 2006. NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vasculardisrupting agent. Anticancer Drugs 17: 25-31. https://doi.org/10.1097/01.cad.0000182745.01612.8a
  62. Nishanth Kumar S, Mohandas C, Nambisan B. 2013. Purification of an antifungal compound, cyclo(L-Pro-D-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode. Microbiol. Res. 168: 278-288. https://doi.org/10.1016/j.micres.2012.12.003
  63. Fraune S, Bosch TCG. 2010. Why bacteria matter in animal development and evolution. Bioessays 32: 571-580. https://doi.org/10.1002/bies.200900192
  64. Holmstrom C, Kjelleberg S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30: 285-293. https://doi.org/10.1111/j.1574-6941.1999.tb00656.x
  65. Carmen Balebona M, Andreu MJ, Angeles Bordas M, Zorrilla I, Morinigo MA, Borrego JJ. 1998. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 64: 4269-4275.
  66. Lee KK. 1995. Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus, Bloch et Schneider. Microb. Pathog. 19: 39-48. https://doi.org/10.1016/S0882-4010(85)90000-2
  67. Carballeira NM, Sostre A, Stefanov K, Popov S, Kujumgiev A, Dimitrova-Konaklieva S, et al. 1997. The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid. Lipids 32: 1271-1275. https://doi.org/10.1007/s11745-006-0163-4
  68. Hoffmann M, Fischer M, Ottesen A, McCarthy PJ, Lopez JV, Brown EW, Monday SR. 2010. Population dynamics of Vibrio spp. associated with marine sponge microcosms. ISME J. 4: 1608-1612. https://doi.org/10.1038/ismej.2010.85
  69. Chimetto LA, Brocchi M, Gondo M, Thompson CC, Gomez-Gil B, Thompson FL. 2009. Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). J. Appl. Microbiol. 106: 1818-1826. https://doi.org/10.1111/j.1365-2672.2009.04149.x
  70. Hariharan H, Giles JS, Heaney SB, Arsenault G, Mcnair N, Rainnie DJ. 1995. Bacteriological studies on mussels and oysters from six river systems in Prince Edward Island, Canada. J. Shellfish Res. 14: 527-532.
  71. Noguchi N, Hwang DF, Arakawa O, Sugita H, Deguchi Y, Shida Y, Hashimoto K. 1987. Vibrio alginolyticus, a tetrodotoxinproducing bacterium, in the intestines of the fish Fugu vermicularis vermicularis. Mar. Biol. 94: 625-630. https://doi.org/10.1007/BF00431409
  72. Omae I. 2003. General aspects of tin-free antifouling paints. Chem. Rev. 103: 3431-3448. https://doi.org/10.1021/cr030669z
  73. Rittschof D. 2000. Natural product antifoulants: one perspective on the challenges related to coatings development. Biofouling 15: 119-127. https://doi.org/10.1080/08927010009386303

Cited by

  1. Antifouling activities of methanolic extracts of three macroalgal species from the Red Sea vol.30, pp.3, 2017, https://doi.org/10.1007/s10811-017-1345-6
  2. Cyclo-( L -Phe- L -Pro), a Quorum-Sensing Signal of Vibrio vulnificus , Induces Expression of Hydroperoxidase through a ToxR-LeuO-HU-RpoS Signaling Pathway To Confer Res vol.86, pp.9, 2017, https://doi.org/10.1128/iai.00932-17
  3. Antifouling Properties of Bacteria Associated with Marine Oyster Crassostrea Sp. vol.34, pp.2, 2017, https://doi.org/10.1007/s41208-018-0095-9
  4. Hanstruepera crassostreae sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from an oyster vol.68, pp.11, 2017, https://doi.org/10.1099/ijsem.0.003053
  5. Isolation, characterization and identification of antibiofouling metabolite from mangrove derived Streptomyces sampsonii PM33 vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-49478-2
  6. Marine natural products vol.36, pp.1, 2017, https://doi.org/10.1039/c8np00092a
  7. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa vol.17, pp.9, 2017, https://doi.org/10.3390/md17090494
  8. Biotechnological Potential of Bacteria Isolated from the Sea Cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia vol.17, pp.11, 2017, https://doi.org/10.3390/md17110635
  9. Bioactive Compounds of Sea Anemones: A Review vol.25, pp.4, 2019, https://doi.org/10.1007/s10989-018-9786-6
  10. Insights into the planktonic to sessile transition in a marine biofilm-forming Pseudoalteromonas isolate using comparative proteomic analysis vol.86, pp.None, 2021, https://doi.org/10.3354/ame01959
  11. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms vol.9, pp.10, 2017, https://doi.org/10.3390/microorganisms9102156
  12. Diverse roles of microbial indole compounds in eukaryotic systems vol.96, pp.6, 2017, https://doi.org/10.1111/brv.12765