• Title/Summary/Keyword: Phylogenetic diversity

Search Result 631, Processing Time 0.025 seconds

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation

  • Son, Ui-han;Dinzouna-Boutamba, Sylvatrie-Danne;Lee, Sanghyun;Yun, Hae Soo;Kim, Jung-Yeon;Joo, So-Young;Jeong, Sookwan;Rhee, Man Hee;Hong, Yeonchul;Chung, Dong-Il;Kwak, Dongmi;Goo, Youn-Kyoung
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (${\pi}$ and ${\Theta}_w$), and Tajima's D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima's D values for vir 27 (1.08530, P>0.1), vir 12 (2.89007, P<0.01), and vir 21 (0.40782, P>0.1) were positive, and that of vir 4 (-1.32162, P>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Study of Genetic Diversity and Taxonomy of Genus Sorbus in Korea Using Random Amplified Polymorphic DNA (RAPD에 의한 한국내 마가목속 식물의 유전적 다양성과 분류학적 연구)

  • Park, So-Hye;Kim, Sea-Hyun;Seo, Hee-Won;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.470-475
    • /
    • 2007
  • Genus Sorbus is a long lived woody species. Plants of this genus are primarily distributed patchy throughout Asia and Europe. Sorbus commixta is primarily distributed throughout Europe. Eastern Asian Sorbus species are regarded as very important herbal medicines in Korea and China. Random amplified polymorphic DNA (RAPD) was used to investigate the genetic variation and phylogenetic analysis of four species of this genus in Korea. Although some Korean populations of these species were isolated and patchily distributed, they exhibited a high level of genetic diversity. Twenty-six primers revealed 205 loci, of which 128 were polymorphic (62.4%). S. commixta showed the highest diversity (0.165), whereas S. aucuparia showed the lowest diversity (0.109). The estimated gene flow (Nm) was low high among intra-species (mean Nm=0.755). A similarity matrix based on the proportion of shared fragments (GS) was used to evaluate relatedness among species. The estimate of GS ranged from 0.786 to 0.963. The molecular data allowed us to resolve well-supported clades in Korean taxa and European species. An addition, especially, species-specific markers for genus Sorbus by RAPD analysis may be useful in germ-plasm classification and agricultural process of several taxa of this genus.

Mitochondrial Genetic Diversity and Phylogenetic Relationships of Siberian Flying Squirrel(Pteromys volans) Populations

  • Lee, Mu-Yeong;Park, Sun-Kyung;Hong, Yoon-Jee;Kim, Young-Jun;Voloshina, Inna;Myslenkov, Alexander;Saveljev, Alexander P.;Choi, Tae-Young;Piao, Ren-Zhu;An, Jung-Hwa;Lee, Mun-Han;Lee, Hang;Min, Mi-Sook
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.269-277
    • /
    • 2008
  • Siberian flying squirrel, an endangered species in South Korea, is distributed through major mountain regions of South Korea. The number of Siberian flying squirrel(Pteromys volans) in South Korea has decreased and their habitats are fragmented and isolated because of anthropogenic activities. So far no molecular genetic data has, however, been available for their conservation and management. To obtain better information concerning genetic diversity and phylogenetic relationships of the Siberian flying squirrel in South Korea, we examined 14 individuals from South Korea, 7 individuals from Russia, and 5 individuals from northeastern China along with previously published 29 haplotypes for 1,140 bp of the mtDNA cytochrome b gene. The 14 new individuals from South Korea had 7 haplotypes which were not observed in the regions of Russia and Hokkaido. The level of genetic diversity(0.616%) in the South Korean population was lower than that in eastern Russia(0.950%). The geographical distribution of mtDNA haplotypes and reduced median network confirmed that there are three major lineages of Siberian flying squirrel, occupying; Far Eastern, northern Eurasia, and the island of Hokkaido. The South Korean population only slightly distinct from the Eurasia, and eastern Russian population, and is part of the lineage Far Eastern. Based on these, we suggest that the South Korean population could be considered to belong to one partial ESU(Far Eastern) of three partial ESUs but a different management unit. However, the conservation priorities should be reconfirmed by nuclear genetic marker and ecological data.

Genetic Diversity and Phylogenetic Relationship in Korean Strains of Lentinus lepideus Based on PCR Polymorphism (PCR 다형성 분석에 의한 한국산 잣버섯의 유전적 다양성 및 유연관계)

  • Lee, Jae-Seong;Cho, Hae-Jin;Yoon, Ki-Nam;Alam, Nuhu;Lee, Kyung-Lim;Shim, Mi-Ja;Lee, Min-Woong;Lee, Yun-Hae;Jang, Myoung-Jun;Ju, Young-Chul;Cheong, Jong-Chun;Shin, Pyung-Gyun;Yoo, Young-Bok;Lee, U-Youn;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Lentinus lepideus, known as train wrecker fungus, has been used for nutritional and medicinal purposes. Recently, commercial cultivation technique and a new cultivar of the mushroom were developed. To investigate the genetic diversity and phylogenetic relationship for identifying the mushroom strains and cultivar, one commercial and 13 strains of Lentinus lepideus from different geographical regions of Korea were analyzed by ITS regions of rDNA and RAPD of genomic DNA. Three strains of Lentinus edodes were also used for the analysis. The size of the ITS1 and ITS2 regions of rDNA from the different strains varied from 173 to 179 bp and 203 to 205 bp, respectively. The sequence of ITS1 was more variable than that of ITS2, while the 5.8S sequences were identical with 156 base pairs. A phylogenetic tree based on the ITS region sequences indicated that selected strains could be classified into four clusters, while 3 strains of L. edodes was divided into a new cluster. Ten primers out of 20 arbitrary primers used in the RAPD-PCR efficiently amplified the genomic DNA. The numbers of amplified DNA bands varied with the primers and strains, with polymorphic DNA fragments in the range from 0.2 to 2.6 kb. The results showed that phylogenetic relationship among Korean strains of Lentnus lepideus is high, but genetic diversity is low.

Origin-related study of genetic diversity and heteroplasmy of Mongolian sheep (Ovis aries) using mitochondrial DNA

  • Kim, Yi Seul;Tseveen, Khaliunaa;Batsukh, Badamsuren;Seong, Jiyeon;Kong, Hong Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.198-206
    • /
    • 2020
  • Food and agricultural production sector, especially livestock production is vital for Mongolia's economic and social development. Domestic sheep play key roles for Mongolians, providing food (meat, milk) and raw materials (wool, sheepskin), but genetic diversity, origin of sheep populations in Mongolia have not been well studied. Studies of population genetic diversity is important research field in conservation and restoration of animal breeds and genetic resources. Therefore, this study aimed to investigate genetic characteristics and estimate origin through the analysis of mitochondrial DNA control region D-loop and Cytochrome b of Mongolian indigenous sheep (Mongolian native, Orkhon and Altanbulag) and one Europe sheep (Suffolk). As a result of there were found, 220 SNPs (Single nucleotide polymorphism) in the D-loop region, 28 SNPs in the Cytochrome B region, furthermore, 77 Haplotypes. The nucleotide diversity was only found in D-loop region (n = 0.0184). Phylogenetic analysis showed that 3 (A, B, and C) of 5 haplogroups of sheep have been identified in our research. Haplogroup C was only found in Mongolian indigenous sheep. Haplogroup D and E were not observed. As a result of haplogroups, haplogroup A was dominant (n = 46 of 94 sheeps), followed by haplogroup B (n = 36) and haplogroup C (n = 12). Sequence analysis showed that T deletion, insertion and heteroplasmy in D-loop region occurred at a high rate in Mongolian indigenous sheep population (T insertion = 47, T deletion = 83). The heteroplasmy, which has never been found in Mongolian sheep, has been newly discovered in this study. As a result, the Mongolian sheep varieties, which mainly derived from Asia, were in hybridization with European sheep varieties.

Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng

  • Song, Jeong Young;Seo, Mun Won;Kim, Sun Ick;Nam, Myeong Hyeon;Lim, Hyoun Sub;Kim, Hong Gi
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants.

Additional mitochondrial DNA sequences from the dragonfly, Nannophya pygmaea (Odonata: Libellulidae), which is endangered in South Korea

  • Wang, Ah Rha;Kim, Min Jee;Kim, Sung Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • The tiny dragonfly, Nannophya pygmaea (Odonata: Libellulidae), is an endangered insect in South Korea. Previously, a partial mitochondrial DNA sequence that corresponded to a DNA barcoding region has been used to infer genetic diversity and gene flow. In this study, we additionally sequenced the barcoding region from N. pygmaea that had been collected from three previously sampled populations (40 individuals) and these sequences were combined with the preexisting data. We also selected and sequenced an additional mitochondrial gene (ND5) to find further variable gene regions in the mitochondrial genome. DNA barcoding sequences of 108 individuals from five South Korean localities showed that genetic diversity was highest in Gangjin, Jeollanam-do Province. Muuido, which was previously occupied by a single haplotype, was also found to have an identical haplotype, which confirmed the low genetic diversity on this islet. Gene flow among populations is highly limited, and no clear distance- or region-based geographic partitioning was observed. Phylogenetic relationships among haplotypes showed that there were no discernable haplotypes in South Korea. ND5 provided slightly more haplotypes compared to the barcoding region in 40 individuals (14 vs. 10 haplotypes in the COI gene). It also had a slightly higher within-locality diversity estimate, which suggested that ND5 had potential as mitochondrial DNA-based marker for population genetic analysis.

Genetic diversity, structure analysis and relationship in soybean mutants as revealed by TRAP marker

  • Kim, Dong-Gun;Lyu, Jae-Il;Lee, Min-Kyu;Kim, Jung Min;Hong, Min Jeong;Kim, Jin-Baek;Bae, Chang-Hyu;Kwon, Soon-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.43-43
    • /
    • 2018
  • Mutation breeding by radiation is useful for improving various crop species. Up to now, a total of 170 soybean mutant varieties have been released in the world, which is the second most registered varieties after rice. Despite the economic importance of soybean, there have been no TRAP marker system studies on genetic relationships between/among mutant lines. To develop a strategy of Mutant Diversity Pool (MDP) conservation, a study on the genetic diversity of 210 soybean mutant lines (8 cultivars and 202 mutants) was performed through a TRAP analysis. Sixteen primer combinations amplified a total of 551 fragments. The highest (84.00%) and lowest (32.35%) polymorphism levels were obtained with primers MIR157B + Ga5 and B14G14B + Ga3, respectively. The mean PIC values 0.15 varied among the primer combination ranging from 0.07 in B14G14B + Sal2 to 0.23 in MIR157B + Sa4. Phylogenetic, principal component analysis (PCA) and structure analysis indicated that the 210 lines belong to four groups based on the 16 combination TRAP markers. AMOVA showed 21.0% and 79.0% variations among and within the population, respectively. Overall, the genetic similarity of each cultivar and its mutants were higher than within other mutant populations. Our results suggest that the TRAP marker system may be useful for assessing the genetic diversity among soybean mutants and help to improve our knowledge of soybean mutation breeding.

  • PDF