Browse > Article
http://dx.doi.org/10.4014/jmb.1609.09008

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq  

Lu, Gui-Hua (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Zhu, Yin-Ling (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Kong, Ling-Ru (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Cheng, Jing (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Tang, Cheng-Yi (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Hua, Xiao-Mei (Nanjing Institute of Environmental Sciences, MEP)
Meng, Fan-Fan (Jilin Academy of Agricultural Sciences)
Pang, Yan-Jun (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Yang, Rong-Wu (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Qi, Jin-Liang (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Yang, Yong-Hua (NJU-NJFU Joint Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.3, 2017 , pp. 561-572 More about this Journal
Abstract
The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.
Keywords
Soil; rhizosphere bacterial community; glyphosate-tolerant soybean; systematic contrast study; 16S ribosomal RNA gene; Illumina MiSeq;
Citations & Related Records
연도 인용수 순위
  • Reference
1 James C. 2015. Global status of commercialized biotech/GM crops: 2014. China Biotechnol. 35: 1-14.
2 Padgette SR, Kolacz KH, Delannay X, Re DB, Lavallee BJ, Tinius CN, et al. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 35: 1451-1461.   DOI
3 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
4 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.   DOI
5 Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, et al. 2011. Reproducibility and quantitation of amplicon sequencingbased detection. ISME J. 5: 1303-1313.   DOI
6 White JR, Nagarajan N, Pop M. 2009. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5: e1000352.   DOI
7 Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57: 289-300.
8 Weaver MA, Krutz LJ, Zablotowicz RM, Reddy KN. 2007. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil. Pest Manag. Sci. 63: 388-393.   DOI
9 Kremer RJ, Means NE. 2009. Glyphosate and glyphosateresistant crop interactions with rhizosphere microorganisms. Eur. J. Agron. 31: 153-161.   DOI
10 Wang Z, Liu ZH, Wang HY. 2012. Salinization resistance transgenic soybean reduced bacterial diversity in rhizosphere. Adv. Intel. Soft. Comput. 134: 377-384.
11 Aira M, Gomez-Brandon M, Lazcano C, Baath E, Dominguez J. 2010. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42: 2276-2281.   DOI
12 Nakatani AS, Fernandes MF, de Souza RA, da Silva AP, dos Reis FB, Mendes IC, Hungria M. 2014. Effects of the glyphosate-resistance gene and of herbicides applied to the soybean crop on soil microbial biomass and enzymes. Field Crops Res. 162: 20-29.   DOI
13 Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.   DOI
14 Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17: 478-486.   DOI
15 Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64: 807-838.   DOI
16 Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68: 1-13.   DOI
17 Inceoglu O, Salles JF, van Overbeek L, van Elsas JD. 2010. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl. Environ. Microbiol. 76: 3675-3684.   DOI
18 Ofek M, Voronov-Goldman M, Hadar Y, Minz D. 2014. Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ. Microbiol. 16: 2157-2167.   DOI
19 Liang JG, Sun S, Ji J, Wu HY, Meng F, Zhang MR, et al. 2014. Comparison of the rhizosphere bacterial communities of zigongdongdou soybean and a high-methionine transgenic line of this cultivar. PLoS One 9: e103343.   DOI
20 Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 110: 6548-6553.   DOI
21 Dunfield KE, Germida JJ. 2001. Diversity of bacterial communities in the rhizosphere and root interior of fieldgrown genetically modified Brassica napus. FEMS Microbiol. Ecol. 38: 1-9.   DOI
22 Arango L, Buddrus-Schiemann K, Opelt K, Lueders T, Haesler F, Schmid M, et al. 2014. Effects of glyphosate on the bacterial community associated with roots of transgenic Roundup Ready (R) soybean. Eur. J. Soil Biol. 63: 41-48.   DOI
23 Newman MM, Hoilett N, Lorenz N, Dick RP, Liles MR, Ramsier C, Kloepper JW. 2016. Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci. Total Environ. 543: 155-160.   DOI
24 Siciliano SD, Germida JJ. 1999. Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, com pared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol. Ecol. 29: 263-272.   DOI
25 Dunfield KE, Germida JJ. 2003. Seasonal changes in the rhizosphere microbial communities associated with fieldgrown genetically modified canola (Brassica napus). Appl. Environ. Microbiol. 69: 7310-7318.   DOI
26 Jin J, Wang GH, Liu XB, Liu JD, Chen XL, Herbert SJ. 2009. Temporal and spatial dynamics of bacterial community in the rhizosphere of soybean genotypes grown in a black soil. Pedosphere 19: 808-816.   DOI
27 Kondorosi E, Mergaert P, Kereszt A. 2013. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu. Rev. Microbiol. 67: 611-628.   DOI
28 Xu YX, Wang GH, Jin J, Liu JJ, Zhang QY, Liu XB. 2009. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol. Biochem. 41: 919-925.   DOI
29 Li CG, Li XM, Kong WD, Wu Y, Wang JG. 2010. Effect of m onoculture s oybean o n soil m icrobial c omm unity in t he Northeast China. Plant Soil 330: 423-433.   DOI
30 Yang T, Liu G, Li Y, Zhu S, Zou A, Qi J, Yang Y. 2012. Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum-sensitive soybean in acid soil. Biol. Fertil. Soils 48: 97-108.   DOI
31 Masson-Boivin C, Giraud E, Perret X, Batut J. 2009. Establishing nitrogen-fixing symbiosis with legumes: how many Rhizobium recipes? Trends Microbiol. 17: 458-466.   DOI
32 Berg G, Grube M, Schloter M, Smalla K. 2014. Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol. 5: article 148.
33 Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7: 514-525.   DOI
34 Chen Y, Duan R, Li X, Li K, Liang J, Liu C, et al. 2015. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis. Mol. Immunol. 68: 290-299.   DOI
35 Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, et al. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75: 748-757.   DOI
36 Muller H, Furnkranz M, Grube M, Berg G. 2013. Genome sequence of Serratia plymuthica strain S13, an endophyte with germination-and plant-growth-promoting activity from the flower of Styrian oil pumpkin. Genome Announc. 1: e00594.
37 Gans J, Wolinsky M, Dunbar J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387-1390.   DOI
38 Dunfield KE, Germida JJ. 2004. Impact of genetically modified crops on soil-and plant-associated microbial communities. J. Environ. Qual. 33: 806-815.   DOI
39 Liu B, Zeng Q, Yan FM, Xu HG, Xu CR. 2005. Effects of transgenic plants on soil microorganisms. Plant Soil 271: 1-13.   DOI
40 Turrini A, Sbrana C, Giovannetti M. 2015. Belowground environmental effects of transgenic crops: a soil microbial perspective. Res. Microbiol. 166: 121-131.   DOI
41 Inceoglu O, Abu Al-Soud W, Salles JF, Semenov AV, van Elsas JD. 2011. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 6: e23321.   DOI
42 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120.   DOI
43 Tang CY, Yang MK, Wu FY, Zhao H, Pang YJ, Yang RW, et al. 2015. Identification of miRNAs and their targets in transgenic Brassica napus and its acceptor (Westar) by highthroughput sequencing and degradome analysis. RSC Adv. 5: 85383-85394.   DOI
44 Lin WY, Huang TK, Chiou TJ. 2 013. Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25: 4061-4074.   DOI
45 Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488: 91-95.   DOI
46 Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90.   DOI
47 Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P. 2014. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl. Acad. Sci. USA 111: 585-592.   DOI
48 Schmidt PA, Balint M, Greshake B, Bandow C, Rombke J, Schmitt I. 2013. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 65: 128-132.   DOI
49 Yang CY, Li Y, Zhou B, Zhou YY, Zheng W, Tian Y, et al. 2015. Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Sci. Rep. 5: 8476.   DOI
50 Bakker MG, Chaparro JM, Manter DK, Vivanco JM. 2015. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil 392: 115-126.   DOI
51 Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963.   DOI
52 Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112: E911-E920.   DOI
53 Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neufeld JD. 2014. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80: 5717-5722.   DOI
54 Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J. 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the illumina MiSeq platform. Microbiome 2: article 6.
55 Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998.   DOI
56 Cole JR, Wang Q, Fish JA, Chai BL, McGarrell DM, Sun YN, et al. 2014. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42: D633-D642.   DOI
57 DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072.   DOI
58 Chen H, Boutros PC. 2011. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12: 35.   DOI