• Title/Summary/Keyword: Photovoltaic-thermal

Search Result 307, Processing Time 0.032 seconds

Analysis of Energy Performance and Green Strategies in the Foreign High-Performance Buildings

  • Park, Doo-Yong;Kim, Chul-Ho;Lee, Seung-Eon;Yu, Ki-Hyung;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • Purpose: In this study, we analyzed the energy performance levels and high-performance technology trends through the case studies of foreign high-performance buildings. Method: Buildings built within 10 years were selected for the analysis of recent trends. we analyzed the buildings of U.S.A, Germany and Japan using LEED certified buildings, Passive House certified buildings and CASBEE certified buildings database for the case study of foreign high-performance buildings. A total of 20 high-performance buildings including 14 cases in U.S.A, 4 cases in Germany and 4 cases in Japan were selected. Annual energy consumption levels for 20 high-performance buildings were collected with the actual energy consumption data or data from simulation programs officially recognized by DOE. Annual energy consumption were compared with the energy performance standard of the office buildings in the CBECS database, ASHRAE Standard 90.1-2004 and Building Energy Efficiency Rating System in Korea. Result: The order of the green strategies applied in the main categories are Renewable Energy(63%), Indoor Environment Control(51%), Envelope Improvement(44%) and HVAC System & Control(28%). Specified strategies most widely used in the sub-categories are high-performance Insulation (70%), High Efficiency Heating, Cooling Source Equipment(85%), Photovoltaic&Solar Thermal(80%) and Daylighting(80%).

A Study on the Plasma Enhanced Hot-wire CVD Grown Miorocrystalline Silicon Films for Photovoltaic Device Applications (태양전지 응용을 위한 플라즈마 열선 화학기상증착법으로 성장한 미세결정 실리콘에 관한 연구)

  • 유진수;임동건;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.632-635
    • /
    • 2001
  • Microcrystalline Si films have been deposited by using five W-wire filaments of 0.5 mm diameter for hot-wire chemical vapor deposition (HWCVD). We compared the HWCVD grown films with the film exposed to transformer couple plasma system for the modification of seed layer. W-wire filament temperature was maintained below 1600$^{\circ}C$ to avoid metal contamination by thermal evaporation at the filament. Deposition conditions were varied with H$_2$dilution ratio, with and without plasma treatment. From the Raman spectra analysis, we observed that the film crystallization was strongly influenced by the H$_2$dilution ratio and weakly depended on the distance between the wire and a substrate. We were able to achieve the crystalline volume fraction of about 70% with an SiH$_4$/H$_2$ratio of 1.3%, a wire temperature of 1514$^{\circ}C$, a substrate separation distance of 4cm, and a chamber pressure of 38 mTorr. We investigated the influence of ${\mu}$c-Si film properties by using a plasma treatment. This article also deals with the influence of the H$_2$dilution ratio in crystallization modification.

  • PDF

A Study on the Application Effect of DSSC BIPV Window System in Office Building Considering Cooling.Heating.Lighting Energy (냉.난방 및 조명에너지를 통합 고려한 DSSC BIPV창호의 사무소건물 적용 효과 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.67-72
    • /
    • 2011
  • The aim of this study is to evaluate how much would the building energy consumption be saved by applying DSSC BIPV window which is possible to control the transmittance and express the color in the office building. For this, physical characteristics such as transmittance and reflectance, U-factor of DSSC areanalyzed and an annual energy consumption that is connected to dimming control is calculated when DSSC BIPV window is applied by alternate clear window system. As a result, It is possible to reduce the anannual energy consumption as much as4.1% by just change the clear double window system to DSSC BIPV double window system because the major factor to reduce energy consumption in the office that has much cooling load than other building is SHGC. When the thermal insulation properties of DSSC BIPV window with low-e coating and making triple window are improved, energy saving ratio is about 9%. Plus, energy saving ratio of 25~28% in lighting energy consumption is possible when the dimming control system with DSSC BIPV window is adopt.

Test Results Grid Connection of 120 kW Power Generation System (120 kW급 태양광 발전시스템 설치 및 실 계통연계 운전 결과 평가)

  • Hwang, Jung-Hee;Ahn, Kyo-Sang;Lim, Hee-Cheon;Kim, Su-Chang;Kim, Sin-Sub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.338-346
    • /
    • 2006
  • In this paper, the test results of medium-size(120 kW class) PV system which was installed in the Taeahn thermal power station of Korea Western Power Co., Ltd., were summarized for developing the practical technology to applicate high voltage grid connection PV system. The 120 kW photovoltaic system which was consisted of 1,300 modules, PCS, and 150 kVA transformer station has been operated since Aug. 05, 2005. For verifying the modeling results of PV system, the operation data was compared with modeling results which was executed commercial PSCAD/EMTD and Psim tools. An equivalent circuit model of a solar cell has been also used for solar array modeling. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter(VIS) and its current control scheme have been analyzed by using P&O (perturbation and Observation) MPPT algorithms technique.

Ge thin layer transfer on Si substrate for the photovoltaic applications (Si 기판에서의 광소자 응용을 위한 Ge 박막의 Transfer 기술개발)

  • 안창근;조원주;임기주;오지훈;양종헌;백인복;이성재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.743-746
    • /
    • 2003
  • We have successfully used hydrophobic direct-wafer bonding, along with H-induced layer splitting of Ge, to transfer 700nm think, single-crystal Ge films to Si substrates. Optical and electrical properties have been also observed on these samples. Triple-junction solar cell structures gown on these Ge/Si heterostructure templates show comparable photoluminescence intensity and minority carrier lifetime to a control structure grown on bulk Ge. When heavily doped p$^{+}$Ge/p$^{+}$Si wafer bonded heterostructures were bonded, ohmic interfacial properties with less than 0.3Ω$\textrm{cm}^2$ specific resistance were observed indicating low loss thermal emission and tunneling processes over and through the potential barrier. Current-voltage (I-V) characteristics in p$^{+}$Ge/pSi structures show rectifying properties for room temperature bonded structures. After annealing at 40$0^{\circ}C$, the potential barrier was reduced and the barrier height no longer blocks current flow under bias. From these observations, interfacial atomic bonding structures of hydrophobically wafer bonded Ge/Si heterostructures are suggested.ested.

  • PDF

3,6-Carbazole Incorporated into Polymer Effects on Solar Cells

  • Lee, Gang-Young;Cha, Hyojung;Park, Chan Eon;Park, Taiho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.481.2-481.2
    • /
    • 2014
  • Bulk hetero junction (BHJ) polymer solar cell (PSCs) is one of the most promising fields as alternative energy source. Especially, the development of new p-type conjugated polymer is one of the main issues to get core technology. In this study, we investigated the chemical doping effects of incorporating 3,6-carbazole units into conjugated polymers based on 2,7-carbazole. We assessed the structural effects of this chemical doping by measuring the photovoltaic device performance of the copolymers with and without annealing. Note that the use of nanostructures in the bulk heterojunction layer could be a major obstacle to commercialization because nano-morphologies are frequently unstable at high temperatures. Therefore, the development of thermally stable polymer:fullerene blends with optimized PCEs is an important goal in this area of research. We studied the morphologies of the copolymers incorporating 3,6-carbazole units resulting from thermal annealing to investigate the effects of the difference between the T g values of the 2,7-carbazole unit and the 3,6-carbazole unit.

  • PDF

Temperature and the Interfacial Buffer Layer Effects on the Nanostructure in the Copper (II) Phthalocyanine: Fullerene Bulk Heterojunction

  • Kim, Hyo Jung;Kim, Jang-Joo;Jeon, Taeyeol;Kong, Ki Won;Lee, Hyun Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.275.1-275.1
    • /
    • 2014
  • The effects of the interfacial buffer layer and temperature on the organic bulk heterojunction (BHJ) nanostructures of copper phthalocyanine (CuPc) and fullerene (C60) systems were investigated using real time in-situ x-ray scattering. In the CuPc:C60 BHJ structures, standing-on configured ${\gamma}$-CuPc phase was formed by co-deposition of CuPc and C60. Once formed ${\gamma}$-phase was thermally stable during the annealing upon $180^{\circ}C$. Meanwhile, the insertion of CuI buffer layer prior to deposition of the CuPc:C60 BHJ layer induced lying-down configured CuPc crystals in the BHJ layer. The lying CuPc peak intensity and the lattice parameter were increased by the thermal annealing. This increment of the intensity seemed to be related to the strain at the interface between CuPc:C60 and CuI, which was proportional to the enhancement of the power conversion efficiency of the device.

  • PDF

Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System (배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계)

  • Lee, Taeyeong;Cho, Byung-Geuk;Cho, Younghoon;Hong, Chanook;Lee, Han-Sol;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.

Synthesis and Characterization of an Organometallic Ruthenium Complex Bearing 4-Picolinic Acid Ligands for Dye-Sensitized Solar Cells (DSSCs) (피콜리닉산 리간드를 갖는 염료감응형 태양전지용 루테늄 염료 합성과 특성분석)

  • Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.192-197
    • /
    • 2016
  • A novel heteroleptic ruthenium(II) complex bearing a 4-picolinic acid unit as anchoring ligands (trans-dithiocyanato bis(4-picolinic acid)ruthenium(II) (trans-H1)) was synthesized and its chemical structure was identified by $^1H$-NMR, FT-IR and mass spectroscopy. The optical, thermal, electrochemical and dye adsorption properties of trans-H1 dye were investigated and compared with those of the gold standard ruthenium complex, Ru(4,4'-dicarboxy-2,2'-bipyridine)$_2cis(NCS)_2$ (N3). DSSCs based on trans-H1 dyes were examined under the illumination of AM 1.5 G, $100mWcm^{-2}$ and exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.46 V, a short-circuit current ($J_{SC}$) of $4.10mA{\cdot}cm^{-2}$, a fill factor (FF) of 60.4%, and a conversion efficiency (PCE) of 1.14%.

Development of a Thermoelectric Cooling System for a High Efficiency BIPV Module

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.187-193
    • /
    • 2010
  • This paper proposes a cooling system using thermoelectric elements for improving the output of building integrated photovoltaic (BIPV) modules. The temperature characteristics that improve the output of a BIPV system have rarely been studied up to now but some researchers have proposed a method using a ventilator. The efficiency of a ventilator depends mainly on the weather such as wind, irradiation etc. Because this cooling system is so sensitive to the velocity of the wind, it is unable to operate in the nominal operating cell temperature (NOCT) or the standard test condition (STC) which allow it to generate the maximum output. This paper proposes a cooling system using thermoelectric elements to solve such problems. The temperature control of thermoelectric elements can be controlled independently in an outdoor environment because it is performed by a micro-controller. In addition, it can be operated around the NOCT or the STC through an algorithm for temperature control. Therefore, the output of the system is increased and the efficiency is raised. This paper proves the validity of the proposed method by comparing the data obtained through experiments on the cooling systems of BIPV modules using a ventilator and thermoelectric elements.