• Title/Summary/Keyword: Photovoltaic power generator

Search Result 108, Processing Time 0.03 seconds

A Modified Perturb and Observe Sliding Mode Maximum Power Point Tracking Method for Photovoltaic System uUnder Partially Shaded Conditions

  • Hahm, Jehun;Kim, Euntai;Lee, Heejin;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.281-292
    • /
    • 2016
  • The proposed scheme is based on the modified perturb and observe (P&O) algorithm combined with the sliding mode technique. A modified P&O algorithm based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT) used in photovoltaic (PV) systems. Under partially shaded conditions and temperature, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of MPPT is particularly important. Conventional techniques are easy to implement but produce oscillations at MPP. The proposed method is applied to a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under non-uniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The modified perturb and observe sliding mode controller successfully overcomes the issues presented by non-uniform conditions and tracks the global MPP. Compared to MPPT techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state, and provides more precise tracking.

A feasibility study on the hybrid power generation system considering of electricity needs' fluctuation of coastal area's houses (해안지역 주거시설을 위한 전력수요 변동 대응형 하이브리드 발전시스템 도입 효과 예측에 관한 사례연구)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.977-983
    • /
    • 2013
  • Based on the consideration of the hourly patterns of the electricity power consumption, this study predicted the effectiveness of hybrid power generation system, which is composed with wind power generator and photovoltaic generator. And this case study is performed at Konrido, which is a affiliated island of Kyeongsangnam-do. As the results, it is obvious that it is not efficient to cover the whole electricity power consumption only with any single power generating system, because the hourly patterns of electricity power consumption, wind power generation and photovoltaic generation are quite different. And because the wind is being through almost 24 hours, it is also found out that wind power generating system with storage battery is the most efficient combination for this case study.

Grid-Connected Photovoltaic System Applying the Step Variable MPPT Control and DVR (Step 가변형 MPPT 제어기법과 DVR을 적용한 계통연계형 태양광 발전 시스템)

  • Lee, Yong-Sik;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.42-49
    • /
    • 2012
  • Grid-connected photovoltaic generator system requires high performance PCS(Power Conditioning System) according to the standard of 'Distributed Generation Grid-Connected Technology Standards'. This paper presents the MPPT control method which improves output efficiency through fast tracking to the maximum power point of PV and a reduced self-excited vibration. Secondly, in this paper DVR function was applied to PCS to compensate the voltage sag frequently happening for a power system. The proposed PCS control is analyzed and compared to conventional PCS operating characteristic, the various insolation and loads, and voltage sag condition through PSIM tool. It proves the utility.

Power control of Photovoltaic Generator System Using Quasi Z-Source Inverter (QZSI를 사용한 태양광 발전시스템의 전력제어)

  • Kim, J.Y.;Chun, T.W.;Lee, H.H.;Kim, H.G.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.246-247
    • /
    • 2010
  • This paper proposed a method for controlling the active power of a single-phase grid-connected photovoltaic(PV) system by the quasi-Z-source inverter (QZSI). The MPPT of PV array is achieved by adjusting a shoot-through time of QZSI. The PI+R controller is used for reducing the steady-state error of the grid current. The simulation studies are carried out to verify the performances of proposed system.

  • PDF

Optimal Operation Scheme and Reliability Index Improvement of Micro Grid Using Energy Storage Systems (에너지 저장장치를 이용한 마이크로 그리드의 최적운영 및 신뢰도 지수 개선)

  • Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The micro grid considered in this paper consists of a diesel generator, a photovoltaic array, a wind turbine, a fuel cell, and a energy storage system. This paper explains and simulates the micro grid components in terms of accuracy and efficiency of having a system model based on the costs of fuel as well as operation and maintenance. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the customer demand and safety of micro grid. The operating cost in fuel-cell system includes the fuel costs and the efficiency for fuel to generate electric power. To develop the overall system model gives a possibility to minimize of the total cost of micro grid. The application of optimal operation can save the interruption costs as well as the operating costs, and improve reliability index in micro grid.

Enhanced Controller Topology for Photovoltaic Sourced Grid Connected Inverters under Unbalanced Nonlinear Loading

  • Sivakumar, P.;Arutchelvi, Meenakshi Sundaram
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.369-382
    • /
    • 2014
  • A growing dynamic electrical demand has created an increasing interest in utilizing nonconventional energy sources like Photovoltaic (PV), wind power, etc. In this context, this paper focuses on the design and development of a composite power controller (CPC) in the decoupled double synchronous reference frame (DDSRF) combining the advantages of direct power control (DPC) and voltage oriented control (VOC) for a PV sourced grid connected inverter. In addition, a controller with the inherent active filter configuration is tested with nonlinear and unbalanced loads at the point of common coupling in both grid connected and autonomous modes of operation. Furthermore, the loss and reactive power compensation due to a non-fundamental component is also incorporated in the design, and the developed DDSRF model subsequently allows independent active and reactive power control. The proposed developed model of the controller is also implemented using MATLAB-Simulink-ISE and a Xilinx system generator which evaluate both the simulated and experimental setups. The simulation and experimental results confirm the validity of the developed model. Further, simulation results for the DPC are also presented and compared with the proposed CPC to further bring out the salient features of the proposed work.

Demonstration study of desalination system with renewable energy (신재생에너지를 이용한 해수담수시스템 실증 연구)

  • Joo, Hong-Jin;Hwang, In-Seon;Joo, Moon-Chang;Kwak, Hee-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.197.1-197.1
    • /
    • 2010
  • This study was carried out to evaluate the operating performances of the evaporation desalination system with solar energy. This system was designed to use evacuated solar collector as the heat source, supplying the required heat energy and photovoltaic power as the electric source, supplying required power to pumps in the desalination system. The 5kW photovoltaic power generation system to make the electricity, the single-stage fresh water generator with plate heat exchanger, and remote control and monitoring system. Solar desalination system was designed and installed in Jeju-island, Korea in 2006, after about 4 years of operation, usability and stability of solar desalination system was guaranteed. The system comprises of the desalination unit which was designed to have daily fresh water capacity of $2m^3$, a $120m^2$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5.2kW photovoltaic power generation to supply the electricity to hydraulic pumps for the heat medium fluids. On a clear day, average daily solar irradiance in Jeju-island was measured to be $500W/m^2$ and the daily fresh water yield showed to be more than 500 liters under this condition. After around three years of a long term operation of the system from January 2007 to August 2009, average daily freshwater yield was analyzed to be around $330{\ell}$. The relationship equation between solar irradiance and freshwater yield was found to be y=1.1806x - 107.89.

  • PDF

Realtime Monitoring system of Residential Photovoltaic system (태양광-풍력 복합발전시스템의 출력제어 특성에 관한 연구)

  • Lee J.I.;Suh J.S.;Yoon P.H.;Cha I.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.933-937
    • /
    • 2003
  • The development of the solar and the wind power energy are necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic(400w) and wind power generation system(400w) was suggested. It combines wind power and solar energy to have the supporting effect from each other However, since even combined generation system cannot always generate stable output with ever-changing weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator

  • PDF

Modeling and Analysis of PEMFC/Battery/Photovoltaic Hybrid Vehicle (고분자 전해질형 연료전지/2차전지/태양전지 하이브리드 자동차에 대한 모델링 및 특성평가)

  • Ji, Hyun-Jin;Ahn, Hyo-Jung;Cha, Suk-Won;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2255-2260
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 30%).

  • PDF

A Basic Study on the Probabilistic Reliability Evaluation of Power System Considering Solar/Photovoltaic Cell Generator (태양광발전원을 고려한 전력계통의 신뢰도평가에 관한 기초연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.19-21
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Solar energy is one of the most successful sources of renewable energy for the production of electrical energy following wind energy. And, the solar/photovoltaic cell generators can not make two-state model as conventional generators, but should be modeled as multi-state model due to solar radiation random variation. The method of obtaining reliability evaluation index of solar cell generators is different from the conventional generators. This paper presents a basic study on reliability evaluation of power system considering solar cell generators with multi-states.

  • PDF