• Title/Summary/Keyword: Photovoltaic or Solar Cell

Search Result 125, Processing Time 0.033 seconds

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

Recent Progress and Prospect of Luminescent Solar Concentrator (발광형 태양광 집광기 최신 연구 동향)

  • Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions (다양한 환경조건에서 태양전지모듈의 PID회복특성)

  • Lee, Eun-Suk;Jung, Tea-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.

Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber (진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템)

  • Kim, Chang-Hee;Jeon, Dong-Hwan;Kong, San-Gun;Kim, Jong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF

Analysis of Series and/or Parallel Converter for V-I Output Characteristics of Solar Cell

  • Yoo J.-H.;Han J.-M.;Ryu T.-G.;Gho J.-S.;Choe G.-H.;Chae Y.-M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.639-643
    • /
    • 2001
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm, because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. And this system is consisted a lot of solar cell unit. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. And then analysis of parallel and series characteristics was done for combination of VISC model.

  • PDF

Improvement of generation capacity per unit site area by the optimization of photovoltaic array (태양광어레이 최적화에 의한 단위 부지면적당 발전량 개선)

  • Kim, Eui Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.109.2-109.2
    • /
    • 2011
  • A photovoltaic system is getting the spotlight for a environment-friendly energy source. But its location is limited because a lot of land is necessary for photovoltaic arrays. Nevertheless, its dissemination is rapidly increasing more than 40 % every year and exceeded about 400 MW in 2009. The radical growth of a photovoltaic system aggravated a lack of sites, so that forests and farmland were destroyed. It is demanded to make use of a vacant lot or little piece of land for the way to solve the lack of sites and improve the location requirements for a photovoltaic system. General photovoltaic arrays are consist of a single layer structure and needs enough separation distances to maximize the amount of solar radiation and to eliminate influences by the shadow of other arrays. So that a large amount of land is required for the site. The solar cell arrays with long separation distances can not be placed in a small vacant lot and its site application efficiency is low. This study optimized photovoltaic arrays as multilayered structure with movable sleeves for the efficient photovoltaic in a small site. The existing photovoltaic arrays with a single layer structure were fixed or tracking systems. In this experimental equipment, photovoltaic arrays attached to the multilayers have rectilinear movement and rotary motion using sleeves. Therefore, shadow influences were removed and the generation capacity was improved. On the simulation result, generation increased by about 30% in the same site considering shadow influences and so on.

  • PDF

Preparations and Photovoltaic Properties of Dye-Sensitized Solar Cells Using Polymer Electrolytes (고분자 전해질을 이용한 염료감응형 태양전지의 제작과 광기전 특성)

  • Kim, Mi-Ra;Shin, Won-Suk;Jin, Sung-Ho;Lee, Jin-Kook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.175-178
    • /
    • 2006
  • Solid-state dye-sensitized solar cells were fabricated using a polymer matrix in electrolyte in the purpose of the improvement of the durability in the dye-sensitized solar cell. In these dye-sensitized solar cells, the polymer electrolyte consisting of $I_2$, LiI, ionic liquid, ethylene carbonate/propylene carbonate and polymer matrix was casted onto $TiO_2$ electrode impregnated Ruthenium complex dye as a photosensitizer. Photovoltaic properties of solid-state dye-sensitized solar cells using polymer matrix (PMMA, PEG, or PAN) were investigated. Comparing photovoltaic effects of cells using hole conducting polymers (BE or 6P) instead of polymer matrix, we investigated the availability of the solid-state polymer electrolyte in dye-sensitized solar cells.

  • PDF

Emergence and Evolution of Organometal Halide Perovskite Solar Cell

  • Park, Nam-Gyu
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.29-30
    • /
    • 2015
  • Since the first report on long-term durable perovskite solar cell in 2012, a surge of interest in perovskite solar cell has been received due to its superb photovoltaic performance exceeding 20%. $MAPbI_3$ ($MA=CH_3NH_3$) perovskite film is able to be prepared simply by solution processesof either sequential two-step or single step procedure. Since $MAPbI_3$ shows balanced charge transport property with micrometer scale charge diffusion length, it can be applied to any kind of junction structures. Mostly studied structure is mesoscopic structure employing mesoporous oxide layer in perovskite film. Photovoltaic performance is primarilyin fluenced by the quality of perovskite film but interfaces are equally important. In this mini review, emergence and evolution of perovskite solar cell are described.

Blocking Layers Deposited on TCO Substrate and Their Effects on Photovoltaic Properties in Dye-Sensitized Solar Cells

  • Yoo, Beom-Hin;Kim, Kyung-Kon;Lee, Doh-Kwon;Kim, Hong-Gon;Kim, Bong-Soo;Park, Nam-Gyu;Ko, Min-Jae
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • In this review, we have investigated the effect of $TiO_2$-based blocking layers (t-BLs), deposited on a transparent conductive oxide (TCO)-coated glass substrate, on the photovoltaic performance of dye-sensitized solar cells (DSSCs). The t-BL was deposited using spin-coating or sputtering technique, and its thicknesses were varied to study the influence of the thin $TiO_2$ layer in between transparent conducting glass and nanocrystalline $TiO_2$ (nc-$TiO_2$). The DSSC with the t-BL showed the improved adhesion and the suppressed charge recombination at a TCO glass substrate than those without the t-BL, which led to the higher conversion efficiency.

Grid Independent Photovoltaic Fuel-Cell Hybrid System: Design and Control Strategy

  • Islam Saiful;Belmans Ronnie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.399-404
    • /
    • 2005
  • In this paper, a hybrid photovoltaic fuel-cell generation system employing an electrolyzer for hydrogen generation and battery for storage purpose is designed and simulated. The system is applicable for remote areas or isolated DC loads. Control strategy has been considered to achieve permanent power supply to the load via the photovoltaic/battery or the fuel cell based on the power available from the sun. MATLAB and SIMULINK have been used for the simulation work. A sensitivity analysis is conducted for various load level based on availability of solar radiation.