• 제목/요약/키워드: Photovoltaic module

검색결과 634건 처리시간 0.029초

태양광 발전시스템의 온도에 따른 출력전력 특성 (Output Power Characteristics According to Temperature for Photovoltaic Systems)

  • 박철웅;최용성;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.186-188
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a temperature range of 10$\sim$50[], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power.

  • PDF

태양광 발전시스템의 일사량에 따른 출력 특성 (Electric Output Characteristics According to Irradiation for Photovoltaic Systems)

  • 왕강;최용성;김향곤;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.189-191
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a irradiation range of $100{\sim}900[W/m^2]$, output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

  • PDF

태양광 발전시스템의 일사량에 따른 전압-전류 특성 (I-V Characteristics According to Irradiation for Photovoltaic Systems)

  • 조재철;최용성;최충석;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.180-182
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was Quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As I-V characteristics according to a irradiation range of 100$\sim$900 $[W/m^2]$, voltage and current were increased with an increase in irradiation. The result is thought of as an increase in output power with increasing irradiation.

  • PDF

태양광 발전시스템의 환경조건을 고려한 PV 모듈 구성 (PV Module Configuration Considering Environment Conditions of Photovoltaic System)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.31-41
    • /
    • 2014
  • This paper proposes the configuration of photovoltaic(PV) module considering the environment conditions of the PV system. The PV system is consisted of the series-parallel connection of the PV module. When shadows or changes of the radiation or an electrical characteristic in the solar cell are happened to PV system, the serious power loss will occur. If the PV module connected in series has the shadows, the output current is restricted to current of shaded PV module. Also if shadow is occurred to the parallel connection PV module, the output voltage is limited to voltage of shaded PV module. These problems are caused power loss. Therefore, this paper proposes the method that makes the output power of the PV module equalize by reconfiguration of PV module using the switching considering these environment conditions. A validity of the method proposed in this paper proves through comparing with performance of conventional PV module.

수상태양광발전시스템의 출력 특성 분석에 관한 연구 (A Study on the Analysis of the Output Characteristics of the Floating Photovoltaic System)

  • 최원용;이재형;좌성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.312-317
    • /
    • 2017
  • In this paper, the effects of environmental variables on the output of the floating photovoltaic water systems, which were installed at the Hapcheon dam in South Korea, were investigated, and the correlations between them were analyzed. The system output was linearly proportional to the solar radiation or irradiance. The output was large in spring and autumn because of high irradiance, but low in the summer when the solar module temperature was high. The influence of the module temperature on the system output was limited in the summer, during which the module temperature change affected the system output more than the change of the irradiance did. In addition, in winter and summer, the module temperature tended to decrease with increasing windspeed, but windspeed did not affect module temperature significantly in the spring and autumn. On the other hand, in winter and spring, the irradiance decreased as the windspeed increased because of movement (or circulation) of the photovoltaic modules.

PV모듈에서 그림자에 의한 전기적 특성 (The Electrical Characteristics of Shading Effect in Photovoltaic Module)

  • 김승태;강기환;박지홍;안형근;유권종;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.257-262
    • /
    • 2008
  • In this paper, we study the electric characteristics of shading effects in photovoltaic module in case of outdoor operation. When fabricating PV module, solar cells are connected serially to obtain the high voltage because of its low open circuit voltage. And total current is determined by lowest current among solar cells. When the shading happens on PV module's surface, the current of shaded solar cell determine the total current flow. Because of this, generally by-pass diode is installed on junction box. The bypass diode operate when revered and shaded solar cell's voltage is over 0.6 voltage. The reverse-biased solar cell gives reduced maximum power of PV module and might give negative effect on durability. So, adequate by-pass installation and selection is needed.

  • PDF

태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안 (Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.199-204
    • /
    • 2020
  • 국내에서 사용 중인 실리콘 태양전지판의 경우 제작 사양이 -0.5에서 0.05℃ 한계에서 최대출력을 낼 수 있도록 설계되어있어 온도 1℃ 상승 시 0.45~0.55%의 출력이 감소한다. 결과적으로 태양광발전은 태양전지(CELL)의 특성상 태양광모듈의 표면 온도상승에 따라 출력이 떨어지게 된다. 출력 저하는 태양광발전의 효율을 떨어뜨리며 효율이 떨어지면 최종적으로 태양광발전의 발전량에 따른 전력판매 수익이 감소하는 결과를 낳는다. 따라서 본 논문에서는 온도검출 센서를 통해 설정된 온도 이상으로 식별 시 태양광모듈 하부(또는 주변)에 냉각 공기를 분사시키는 방식을 연구방안으로 제안한다. 추가로 손실된 태양에너지를 활용하여 발전량을 증가시키며 냉각 공기를 통한 냉각기능을 적용함으로써 발전량을 더욱 증대시킬 수 있도록 하였다.

태양광모듈 바이패스 특성에 관한 연구 (A Study on Bypass Characteristics for Photovoltaic Module)

  • 채명석;서훈용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.79-80
    • /
    • 2014
  • In this paper, to make sure that the photovoltaic solar cell module of the system can be normal for output in each solar cell module, input and output unit is installed in the bypass device, and then through the voltage and current monitoring to determine abnormality of the solar cell module, in the case of abnormal occurring, the bypass device can be pass to the next solar module of the serial structure.

  • PDF

다양한 환경조건에서 태양전지모듈의 PID회복특성 (PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions)

  • 이은석;정태희;고석환;주영철;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.

후면부재에 따른 BIPV 모듈의 특성 분석 (Characteristic Analysis of BIPV Module according to Rear Materials)

  • 김현일;강기환;박경은;유권종;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권4호
    • /
    • pp.28-33
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. Building integrated photovoltaic(BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influenced on the reflection by rear materials such as white back sheet and the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. In this study, to use as suitable building materials into environmentally friendly house like green home, characteristic analysis of BIPV module according to rear materials achieved. Electrical output of PV module with white back sheet is high about 10% compared to other pv module because of 83% reflectivity of white back sheet compared to 8.4% reflectivity of other PV modules with different rear materials(black back sheet and glass). In the result of outdoor experiment during a year, electrical output of four different PV module is decreased about 3.72%.