• 제목/요약/키워드: Photovoltaic generation forecasting

검색결과 17건 처리시간 0.02초

ANN/RNN 기반 태양광 발전량 예측에 관한 연구 (A Study on ANN/RNN-based Photovoltaic Generation Forecasting)

  • 백수웅;권성기;김창헌;박계춘
    • Current Photovoltaic Research
    • /
    • 제12권3호
    • /
    • pp.49-54
    • /
    • 2024
  • This study proposed a forecasting model that combines ANNs and RNNs to address the intermittency and fluidity of solar power generation. Four prediction models were trained separately based on sky conditions provided by the Korea Meteorological Administration, and insolation was estimated using the ASHRAE Clear-Sky model. The proposed model showed an error rate of 6.5-7.7% based on NMAE, which meets the requirements of power generation prediction. As a result, this study can improve the accuracy of solar power generation forecasting, which can contribute to the stability of power operation and the profitability of power operators.

미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측 (Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter)

  • 성상경;조영상
    • 자원ㆍ환경경제연구
    • /
    • 제28권4호
    • /
    • pp.467-495
    • /
    • 2019
  • 태양광 발전과 같은 신재생에너지의 불확실성은 전력계통의 유연성을 저해하며, 이를 방지하기 위해서는 정확한 발전량의 사전 예측이 중요하다. 본 연구는 미세먼지 농도를 포함한 기상자료를 이용하여 태양광 발전량을 예측하는 것을 목적으로 한다. 본 연구에서는 2016년 1월 1일부터 2018년 9월 30일까지의 발전량, 기상자료, 미세먼지 농도 자료를 이용하고 머신러닝 기반의 RBF 커널 함수를 사용한 서포트 벡터 머신을 적용하여 태양광 발전량을 예측하였다. 예측변수에 미세먼지 농도 반영 유무에 따른 태양광 발전량 예측 모델의 성능을 비교한 결과 미세먼지 농도를 반영한 발전량 예측 모델의 성능이 더 우수한 것으로 나타났다. 미세먼지를 고려한 예측 모형은 미세먼지를 고려하지 않은 예측 모형 대비 6~20시 예측 모형에서는 1.43%, 12~14시 예측 모형에서는 3.60%, 13시 예측 모형에서는 3.88%만큼 오차가 감소하였다. 특히 발전량이 많은 주간 시간대에 미세먼지 농도를 반영하는 모형의 예측 정확도가 더 뛰어난 것으로 나타났다.

일기 예보와 예측 일사 및 일조를 이용한 태양광 발전 예측 (Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation)

  • 신동하;박준호;김창복
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.643-650
    • /
    • 2017
  • 무한한 에너지원을 가진 태양광 발전은 기상 에 의존하기 때문에 발전량이 매우 간헐적이다. 따라서 태양광 발전량의 불확실성을 줄이고 경제성을 향상시키기 위하여 정확한 발전량 예측기술이 필요하다. 기상청은 3일간 기상정보를 예보하지만 태양광 발전 예측에 높은 상관관계가 있는 일조량과 일사량은 예보하지 않는다. 본 연구에서는 기상청에서 3일간 예보하는 기상요소인 기온, 강수량, 풍향, 풍속, 습도, 운량 등을 이용하여, 일조 및 일사량을 예측하였으며, 예측된 일사 및 일조량을 이용하여, 실시간 태양광 발전량을 예측하는 딥러닝 모델을 제안하였다. 결과로서 예측된 기상요소로 발전량을 예측하는 모델보다 제안 모델이 MAE, RMSE, MAPE 등의 오차율 지표에서 더 좋은 결과를 보여주었다. 또한, 기계 학습의 한 종류인 서포트 벡터 머신을 사용하는 것보다 DNN을 사용하는 것이 더 낮은 오차율 지표를 보여주었다.

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법 (Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM)

  • 박성우;정승민;문재욱;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권8호
    • /
    • pp.339-346
    • /
    • 2022
  • 최근 화석연료의 무분별한 사용으로 인한 자원고갈 문제 및 기후변화 문제 등이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 증가하고 있다. 특히 신재생에너지 중 태양광 에너지는 다른 신재생에너지원에 비해 고갈될 염려가 적고, 공간적인 제약이 크지 않아 전국적으로 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효율적으로 사용하기 위해서는 보다 정확한 태양광 발전량 예측 모델이 필요하다. 이를 위하여 다양한 기계학습 및 심층학습 기반의 태양광 발전량 예측 모델이 제안되었지만, 심층학습 기반의 예측 모델은 모델 내부에서 일어나는 의사결정 과정을 해석하기가 어렵다는 단점을 보유하고 있다. 이러한 문제를 해결하기 위하여 설명 가능한 인공지능 기술이 많은 주목을 받고 있다. 설명 가능한 인공지능 기술을 통하여 예측 모델의 결과 도출 과정을 해석할 수 있다면 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 해석된 도출 결과를 바탕으로 모델을 개선하여 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 BiLSTM(Bidirectional Long Short-Term Memory)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHAP(SHapley Additive exPlanations)을 통하여 설명하는 설명 가능한 태양광 발전량 예측 기법을 제안한다.

철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구 (Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure)

  • 유복종;박찬배;이주
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.474-481
    • /
    • 2017
  • 국내에서 태양광 발전설비 설계 시 설계 단계에서의 태양광발전소의 발전량 예측은 국내 현장임에도 불구하고 PVsyst, PVWatts 등 해외 발전량 예측 프로그램과 해외 기상 자료를 이용하여 발전량을 예측하는 경우가 대부분을 차지하고 있는 실정이다. 본 논문에서는 기상정보를 활용한 발전량 예측 비교 연구를 위하여 현재 운영중인 2개 지역의 국내 태양광발전소를 대상지로 선정하였다. 발전량 예측 프로그램인 PVsyst를 활용하여 Meteonorm 7.1과 NASA-SSE의 해외 기상정보를 이용한 발전량 예측값과 국내 기상청 (Korea Meteorology Administration) 기상정보를 활용한 발전량 예측 정확성을 비교하였다. 추가적으로, 기상자료 비교 분석을 통한 발전량 예측 개선 방안을 연구하고, 최종적으로 실제 발전량과의 비교 분석을 통해 기후요소가 고려된 태양광 발전량 예측 수정 모델을 제시하였다.

철도분야 태양광 발전 적용 확대를 위한 설계 단계에서의 태양광 발전량 예측 연구 (A Study on Photovoltaic Power Generation Amount Forecast at Design Stage for Extended Application in the Field of Railways)

  • 유복종;이주
    • 한국철도학회논문집
    • /
    • 제20권2호
    • /
    • pp.182-189
    • /
    • 2017
  • 본 논문의 연구 목적은 저탄소 에너지화에 큰 비중을 차지하고 있는 태양광 발전 시스템의 철도분야 적용확대를 위한 설계 단계에서의 태양광 발전량 예측 연구로 실제 운영하고 있는 지평 태양광발전소를 대상으로 태양광 발전량 상용 예측 프로그램인 PVsyst를 활용하여 프로그램 기본 제공 NASA와 Meteonorm의 해외 기상정보를 이용한 연간 태양광 발전량 예측값과 기상청(KMA) 기상정보를 이용한 발전량 예측값을 비교하고, 한국전력거래소(KPX) 실제 발전량과의 비교 분석을 통해 태양광발전소 구축비의 적정성을 확보하여 철도분야의 태양광 발전 시스템 확대적용과 나아가 신기후 체제에 대응한 저탄소 에너지화에 기여하고자 한다.

태양전지 변환효율 보정계수 도입에 의한 태양발전시스템 발전량 예측 (Photovoltaic System Output Forecasting by Solar Cell Conversion Efficiency Revision Factors)

  • 이일룡;배인수;심헌;김진오
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권4호
    • /
    • pp.188-194
    • /
    • 2005
  • There are many factors that affect on the system output of Photovoltaic(PV) power generation; the variation of solar radiation, temperature, energy conversion efficiency of solar cell etc. This paper suggests a methodology for calculation of PV generation output using the probability distribution function of irradiance, PV array efficiency and revision factors of solar cell conversion efficiency. Long-term irradiance data recorded every hour of the day for 11 years were used. For goodness-fit test, several distribution (unctions are tested by Kolmogorov-Smirnov(K-S) method. The calculated generation output with or without revision factors of conversion efficiency is compared with that of CMS (Centered Monitoring System), which can monitor PV generation output of each PV generation site.

일사량 확률분포함수를 이용한 태양광 발전시스템 발전량 예측 (Photovoltaic Generation System Output Forecasting using Irradiance Probability Distribution Function)

  • 이일룡;배인수;정창호;김진오;심헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.548-550
    • /
    • 2004
  • This paper suggests a methodology for calculation of photovoltaic(PV) generation system output using probability distribution function, PV way efficiency and PV system design Parameters. Long term irradiance recorded for every hour of the day for 11 years were used. For goodness-fit test, several distribution functions are tested by Kolmogorov- Smirnov(K-S) test. And the calculated generation output is compared with that of CMS(Centered Monitoring System), which can monitoring PV generation output of each PV generation site.

  • PDF

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.