• Title/Summary/Keyword: Photovoltaic generation forecasting

Search Result 17, Processing Time 0.021 seconds

A Study on ANN/RNN-based Photovoltaic Generation Forecasting (ANN/RNN 기반 태양광 발전량 예측에 관한 연구)

  • Su Wung Baek;Sung Gi Kwon;Chang Heon Kim;Gye Choon Park
    • Current Photovoltaic Research
    • /
    • v.12 no.3
    • /
    • pp.49-54
    • /
    • 2024
  • This study proposed a forecasting model that combines ANNs and RNNs to address the intermittency and fluidity of solar power generation. Four prediction models were trained separately based on sky conditions provided by the Korea Meteorological Administration, and insolation was estimated using the ASHRAE Clear-Sky model. The proposed model showed an error rate of 6.5-7.7% based on NMAE, which meets the requirements of power generation prediction. As a result, this study can improve the accuracy of solar power generation forecasting, which can contribute to the stability of power operation and the profitability of power operators.

Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter (미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측)

  • Sung, Sangkyung;Cho, Youngsang
    • Environmental and Resource Economics Review
    • /
    • v.28 no.4
    • /
    • pp.467-495
    • /
    • 2019
  • Uncertainty of renewable energy such as photovoltaic(PV) power is detrimental to the flexibility of the power system. Therefore, precise prediction of PV power generation is important to make the power system stable. The purpose of this study is to forecast PV power generation using meteorological data including particulate matter(PM). In this study, PV power generation is predicted by support vector machine using RBF kernel function based on machine learning. Comparing the forecasting performances by including or excluding PM variable in predictor variables, we find that the forecasting model considering PM is better. Forecasting models considering PM variable show error reduction of 1.43%, 3.60%, and 3.88% in forecasting power generation between 6am~8pm, between 12pm~2pm, and at 1pm, respectively. Especially, the accuracy of the forecasting model including PM variable is increased in daytime when PV power generation is high.

Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation (일기 예보와 예측 일사 및 일조를 이용한 태양광 발전 예측)

  • Shin, Dong-Ha;Park, Jun-Ho;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2017
  • Photovoltaic generation which has unlimited energy sources are very intermittent because they depend on the weather. Therefore, it is necessary to get accurate generation prediction with reducing the uncertainty of photovoltaic generation and improvement of the economics. The Meteorological Agency predicts weather factors for three days, but doesn't predict the sunshine and solar radiation that are most correlated with the prediction of photovoltaic generation. In this study, we predict sunshine and solar radiation using weather, precipitation, wind direction, wind speed, humidity, and cloudiness which is forecasted for three days at Meteorological Agency. The photovoltaic generation forecasting model is proposed by using predicted solar radiation and sunshine. As a result, the proposed model showed better results in the error rate indexes such as MAE, RMSE, and MAPE than the model that predicts photovoltaic generation without radiation and sunshine. In addition, DNN showed a lower error rate index than using SVM, which is a type of machine learning.

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).

Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure (철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구)

  • Yoo, Bok-Jong;Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.474-481
    • /
    • 2017
  • When designing photovoltaic power plants in Korea, the prediction of photovoltaic power generation at the design phase is carried out using PVSyst, PVWatts (Overseas power generation prediction software), and overseas weather data even if the test site is a domestic site. In this paper, for a comparative study to predict power generation using weather information, domestic photovoltaic power plants in two regions were selected as target sites. PVsyst, which is a commercial power generation forecasting program, was used to compare the accuracy between the predicted value of power generation (obtained using overseas weather information (Meteonorm 7.1, NASA-SSE)) and the predicted value of power generation obtained by the Korea Meteorological Administration (KMA). In addition, we have studied ways to improve the prediction of power generation through comparative analysis of meteorological data. Finally, we proposed a revised solar power generation prediction model that considers climatic factors by considering the actual generation amount.

A Study on Photovoltaic Power Generation Amount Forecast at Design Stage for Extended Application in the Field of Railways (철도분야 태양광 발전 적용 확대를 위한 설계 단계에서의 태양광 발전량 예측 연구)

  • Yoo, Bok-Jong;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.182-189
    • /
    • 2017
  • Photovoltaic power generation systems make up a large part of the low carbon energy trend. The purpose of this study is to utilize PVsyst, a commercial forecasting program, to forecast research on the design stages of photovoltaic power generation for wider applications of this system in railroads and to consider prospective issues for photovoltaic power plants that are currently being operated. Given this, we will compare the forecast value of generated photovoltaic power, derived from foreign weather forecast information provided by NASA, along with information from Meteonorm, and the forecast values derived from the KMA weather information. By comparing these values with amounts actually generated by KPX, this research aims to secure propriety rights for wider application of photovoltaic power generation systems in railroads, and to contribute to low carbon energy for the new climate of the future.

Photovoltaic System Output Forecasting by Solar Cell Conversion Efficiency Revision Factors (태양전지 변환효율 보정계수 도입에 의한 태양발전시스템 발전량 예측)

  • Lee Il-Ryong;Bae In-Su;Shim Hun;Kim Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.188-194
    • /
    • 2005
  • There are many factors that affect on the system output of Photovoltaic(PV) power generation; the variation of solar radiation, temperature, energy conversion efficiency of solar cell etc. This paper suggests a methodology for calculation of PV generation output using the probability distribution function of irradiance, PV array efficiency and revision factors of solar cell conversion efficiency. Long-term irradiance data recorded every hour of the day for 11 years were used. For goodness-fit test, several distribution (unctions are tested by Kolmogorov-Smirnov(K-S) method. The calculated generation output with or without revision factors of conversion efficiency is compared with that of CMS (Centered Monitoring System), which can monitor PV generation output of each PV generation site.

Photovoltaic Generation System Output Forecasting using Irradiance Probability Distribution Function (일사량 확률분포함수를 이용한 태양광 발전시스템 발전량 예측)

  • Lee Il Ryong;Bae In Su;Jung Chang Ho;Kim Jln O;Shim Hun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.548-550
    • /
    • 2004
  • This paper suggests a methodology for calculation of photovoltaic(PV) generation system output using probability distribution function, PV way efficiency and PV system design Parameters. Long term irradiance recorded for every hour of the day for 11 years were used. For goodness-fit test, several distribution functions are tested by Kolmogorov- Smirnov(K-S) test. And the calculated generation output is compared with that of CMS(Centered Monitoring System), which can monitoring PV generation output of each PV generation site.

  • PDF

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.