• 제목/요약/키워드: Photovoltaic electricity

검색결과 274건 처리시간 0.027초

넷 제로에너지주택의 부하매칭에 관한 연구 (A Study of Load Matching on the Net-Zero Energy House)

  • 김법전;임희원;김덕성;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제38권4호
    • /
    • pp.55-66
    • /
    • 2018
  • nZEH (net-Zero Energy House) is defined as a self-sufficient energy building where the sum of energy output generated from new & renewable energy system and annual energy consumption is zero. The electricity generated by new & renewable energy system with the form of distributed generation is preferentially supplied to electrical demand, and surplus electricity is transmitted back to grid. Due to the recent expansion of houses with photovoltaic system and the nZEH mandatory by 2025, the rapid increase of distributed generation is expected. Which means, we must prepare for an electricity-power accident and stable electricity supply. Also electricity charges have to be reduce and the grid-connected should be operated efficiently. The introduction of ESS is suggested as a solution, so the analysis of the load matching and grid interaction is required to optimize ESS design. This study analyzed the load matching and grid interaction by expected consumption behavior using actual data measured in one-minute intervals. The experiment was conducted in three nZEH with photovoltaic system, called all-electric houses. LCF (Load Cover Factor), SCF (Supply Cover Factor) and $f_{grid}$ (Grid Interaction Index) were evaluated as an analysis indicator. As a result, LCF, SCF and $f_{grid}$ of A house were 0.25, 0.23 and 0.27 respectively; That of B house were 0.23, 0.23, 0.19, and that of C were 0.20, 0.19, 0.27 respectively.

태양광발전시스템의 장기운전에 의한 성능특성 분석 (The Long-term Operating Evaluation of the Grid Connected Photovoltaic System)

  • 김의환;강승원;김재언
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.28-35
    • /
    • 2011
  • Recently, photovoltaic systems have been devolved into much larger systems up to MW-scale. Photovoltaic industry participants give their focus on power generation capability of photovoltaic modules because their benefits can be decided from the amount of generation. The information on long-term performance change of photovoltaic modules helps to estimate the amount of power generation and evaluate the economic cost-benefits. Long-term performance of a PV system has been analyzed with operation data for 12 years from 1999 to 2010. In the first year, the amount of yearly power generation was 57.7 MWh with 13.2% capacity factor. In 2007, the amount of yearly generation was 44.3 MWh with 10.14% capacity factor, and in 2010, the amount was decreased down to 38.1 MWh with 8.7% capacity factor. The result means that long-term capacity factor has been 4.5% decreased for 12 years and that the amount of generation has been decreased 34.0% for 12 years which is 2.8 % per year. The latter capacity factor has been decreased faster than 0.20%, the average rate for 10 years. The performance decrease of the PV system is meant to be accelerated. The decrease of performance and utilization is due to aged deterioration of photovoltaic modules and lowering conversion efficiency of PCS.

III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석 (Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor)

  • 고재홍
    • 조명전기설비학회논문지
    • /
    • 제26권9호
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

대학건물의 전력소비패턴 분석을 통한 태양광, ESS 적정용량 산정 및 경제적 효과 분석 (Calculation of Photovoltaic, ESS Optimal Capacity and Its Economic Effect Analysis by Considering University Building Power Consumption)

  • 이혜진;최정원
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.207-217
    • /
    • 2018
  • Recently, the importance of energy demand management, particularly peak load control, has been increasing due to the policy changes of the Second Energy Basic Plan. Even though the installation of distributed generation systems such as Photovoltaic and energy storage systems (ESS) are encouraged, high initial installation costs make it difficult to expand their supply. In this study, the power consumption of a university building was measured in real time and the measured power consumption data was used to calculate the optimal installation capacity of the Photovoltaic and ESS, respectively. In order to calculate the optimal capacity, it is necessary to analyze the operation methods of the Photovoltaic and ESS while considering the KEPCO electricity billing system, power consumption patterns of the building, installation costs of the Photovoltaic and ESS, estimated savings on electric charges, and life time. In this study, the power consumption of the university building with a daily power consumption of approximately 200kWh and a peak power of approximately 20kW was measured per minute. An economic analysis conducted using these measured data showed that the optimal capacity was approximately 30kW for Photovoltaic and approximately 7kWh for ESS.

태양광 대량보급 시대의 기술개발 (Technology Development in the Era of Photovoltaic Mass Supply)

  • 조은철;송재천;조영현;이준신
    • Current Photovoltaic Research
    • /
    • 제6권4호
    • /
    • pp.124-132
    • /
    • 2018
  • The Korean electric power supply plan was prepared by greatly enhancing the environmental and safety with considering the economical efficiency of the electric equipment, the impact on the environment and the public safety. As a result, the fossil energy-based power generation sector is accelerating the paradigm shift to eco-friendly energy such as solar power and wind. Also the solar power industry is expected to grow into a super large-sized industry by converging the energy storage and electric vehicle industry. Generally, a levelized cost of electricity (LCOE) is used to calculate the power generation cost for different generation power generation efficiency, operating cost, and life span. In this paper, we have studied the future research and development direction of photovoltaic technology development for the era of massive utilization of photovoltaic solar power, and have studied the LCOE of major countries including China, USA, Germany, Japan and Korea. Finally we have reviewed USA and Japan research programs to reduce the LCOE.

SWPV 태양 열-전기 복합생산 모듈 성능평가 연구 (Performance Evaluation Study of Solarwall-Photovoltaic Module to Generate Solar Electric Power)

  • 아메드 나비드;강은철;이의준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.397-402
    • /
    • 2005
  • Photovoltaic (PV) module can generate electricity using sunlight without causing any environmental degradation. Due to higher fossil fuel prices and environmental awareness, PV applications are becoming more popular as clean source of electricity generation. PV output is sensitive to the operating temperature and can be drastically affected in Building Integrated PV (BIPV) systems. PV Solarwall (SWPV) combination and PV systems have been evaluated in this study for improvement in electrical output and system costs. PV modules under forced ventilation. A 75W polycrystalline silicon PV module was fixed on SW in front of the ventilation fan as it was indicated to be the coolest position on the SW in phoenix simulations. The effectiveness of cooling by means of the forced ventilating air stream has been studied experimentally. The results indicate that there appears to be significant difference in temperature as well as electricity output comparing the SWPV and BIPV options. Electrical output power recovered is about $4\%$ during the typical day of the month of February. RETScreen(R) analysis of a 3kW PV system hypothetically located at Taegu has shown that with typical temperature reduction of $15^{{\circ}C$, it is possible to reduce the simple payback periods by one year. The work described in this paper may be viewed as an appraisal of a SWPV system based on its improved electrical and financial performances due to its ability to operate at relatively lower temperatures.

  • PDF

군부대 유휴부지를 활용한 탄소 순 배출량 제로 달성을 위한 태양광 패널 및 수소 연료 저장시설의 설치 규모 예측 (A Study on Predicting Installation Scale of Photovoltaic Panels and Hydrogen Fuel Storage Facilities to Achieve Net Zero Carbon Emissions Exploiting Idle Sites of Military Bases)

  • 문동학;허지용
    • 한국군사과학기술학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2024
  • In this study, the scale of renewable photovoltaic(PV) panels and hydrogen fuel storage facilities required to achieve "net zero carbon emissions" in military facilities were predicted based on actual electricity consumption. It was set up to expect the appropriate installation size of PV panel and hydrogen fuel storage facility for achieving carbon neutrality, limited to the electricity consumption in the public sector, including national defense and social security administration in Yeongcheon. The experimental results of this paper are largely composed of two parts. First, representative meteorological factors were considered to predict solar power generation in the Yeongcheon area, and solar power generation was estimated through a multiple regression model using deep learning techniques. Second, the size of solar power generation facilities and hydrogen storage facilities in military bases was estimated with the amount of solar power generation and electricity consumption. As a result of this analysis, it was calculated that a site of 155.76×104 m2 for PV panels was needed and a facility capable of storing 27,657 kg of hydrogen gas was required. Through these results, it is meaningful to demonstrated the prospect that military units can lead the achievement of "carbon net zero 2050" by using PV panels and hydrogen fuel storage facilities on idle sites of military bases.

Overall efficiency enhancement and cost optimization of semitransparent photovoltaic thermal air collector

  • Beniwal, Ruby;Tiwari, Gopal Nath;Gupta, Hari Om
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.118-128
    • /
    • 2020
  • A semitransparent photovoltaic-thermal (PV/T) air collector can produce electricity and heat simultaneously. To maximize the thermal and overall efficiency of the semitransparent PV/T air collector, its availability should be maximum; this can be determined through a Markov analysis. In this paper, a Markov model is developed to select an optimized number of semitransparent PV modules in service with five states and two states by considering two parameters, namely failure rate (λ) and repair rate (μ). Three artificial neural network (ANN) models are developed to obtain the minimum cost, minimum temperature, and maximum thermal efficiency of the semitransparent PV/T air collector by setting its type appropriately and optimizing the number of photovoltaic modules and cost. An attempt is also made to achieve maximum thermal and overall efficiency for the semitransparent PV/T air collector by using ANN after obtaining its minimum temperature and available solar radiation.

태양광 발전시스템의 일사량에 따른 전력 패턴 분석 (Power Pattern Analysis According to Irradiation for Photovoltaic Systems)

  • 박상준;김형석;최용성;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.46-48
    • /
    • 2009
  • This paper aims to investigate generation conditions necessary for the most efficient generation by measuring electricity power under various irradiation conditions, since the photovoltaic generation system has high costs and low efficiency. In addition, because the irradiation varies hourly, daily, monthly, and yearly, the research on the irradiation necessary for photovoltaic generation was carried out by analyzing the pattern o( Bower under various irradiation conditions. Also, after measuring the daily variations of irradiation and generation power, the monthly accumulated irradiation and monthly accumulate power which had the most generation power were investigated and the pattern of the annual generation power was analyzed. The results of this study are as follows. As for the relationship between the photovoltaic generation system and the irradiation, the generation power increased with the irradiation and when the irradiation was more than 600 $[W/m^2]$ the generation power amounted to more than 100 [Wh] as the resonable result.

  • PDF

울산지역의 태양광에너지의 활용방안 (Application Strategies of Photovoltaic Energy in Ulsan)

  • 이관호;심광열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.320-323
    • /
    • 2009
  • Weather data is an important variable for the estimation value of the program for evaluating energy performance. The difference in data value of major weather elements used in weather data (temperature, insolation amount) were compared and analyzed. It was found that temperature showed similar values but insolation amount took different values. Especially in Ulsan, since the Meteorological Association does not measure insolation amount. To optimize the incident solar radiation, the solar azimuth angles are needed for solar photovoltaic systems. Test results shows that the $60^{\circ}$installation angel higher efficient than the $30^{\circ}$ installation angel in winter.

  • PDF