• Title/Summary/Keyword: Photovoltaic electricity

Search Result 274, Processing Time 0.026 seconds

Analysis Thermal Performance of PV/Thermal Collector with Dye-sensitized Solar Cell Module (염료감응형태양전지 모듈 적용 PVT 집열기의 열적 성능 분석)

  • Jang, Han-Bin;Mun, Jong-Hyeok;Gang, Jun-Gu;Kim, Jin-Hui;Kim, Jun-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.273-276
    • /
    • 2009
  • Photovoltaic-thermal(PVT) collectors are a combination of photovoltaic modules with solar thermal collectors, forming one device that receives solar radiation and produces electricity and heat simultaneously. Of various PV modules, dye-sensitized solar cell(DSC) is a relatively new type of solar cell technology that can transmit light while they can generate electricity. With this aspect, DSC can be applied into solar thermal collectors. The object of this study is to evaluate the thermal performance of PVT collector with DSC. The thermal performance of the DSC PVT combind collector was measured in outdoor conditions with the solar radiation of over $700W/m^2$. In this study, the PVT collector with the 30% light transmittance of DSC achieved its thermal efficiency of about 36%.

  • PDF

Opportunities and challenges of solar energy application in energy sector of Sri Lanka

  • De Silva, Kaluthanthiri Patabendi Sepali Darshika
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.45-55
    • /
    • 2020
  • Although Sri Lanka's current carbon footprint is much less compared to other developing countries, the country's existing and planned economic developments have raised the demand for power, resulting an increased GHG (Greenhouse gas) emission. GHG in Sri Lanka is emitted mostly by the burning of fossil fuels for energy generation including transport. However, the most effective way of reducing GHG emissions from the energy sector is to use renewable energy sources. Solar is in the top list of renewable resources that has much potential to use to meet the demand for electricity generation in the country. The purpose of this study is to evaluate the current status of solar power generation and opportunities, barriers for implementing the programs of solar energy in Sri Lanka. Literature reviews mainly used as the primary tool for this study. Sri Lankan government had set the targets for adding 200 MW to the national grid by 2020, and to increase up to 1000 MW by 2025 of solar electricity. To achieve these targets the prevailing barriers have to be considered.

A Photovoltaic Device Model for Grid-connected PV System Simulation (계통연계형 태양광발전시스템의 태양광전지모델 시뮬레이션)

  • Campbell, Ryan;Kim, Hak-Man;Lee, Jong-Su;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.18-19
    • /
    • 2006
  • The recent interest in distributed generation (DG) due to the opening of the electricity market and the need for alternatives to conventional fossil fuel-based electricity generation has created renewed interest in grid-connected photovoltaic(PV) systems. Many studies are being performed at the power system level to examine the impacts of grid-connected PV systems and several models for PV arrays have been proposed in the literature. However, the complexity of these models and difficulties of implementing them in various software programs can be deterrents to their use. This paper proposes a robust and flexible PV device model suitable for dynamic and transient studies where the PV array's non-linear DC characteristics are important. The model's implementation in software is straightforward and it can even be constructed using standard software library components, as demonstrated using PSCAD/EMTDC.

  • PDF

IMPLEMENTATION OF LARGE SCALE SOLAR (LSS) POLICY IN MALAYSIA

  • Azziz, Mohamad Hamzi Abdul;Kim, Kyung Nam
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • Large Scale Solar (LSS) is one of the initiatives announced by the Government of Malaysia in order to increase the share of renewable energy in electricity generation. It is widely known that the energy sector is the major contributor to the Greenhouse Gas (GHG) emissions (or carbon emissions) for many countries including Malaysia. It was recorded that the energy has contributed as much as 218.9 MtCO2eq in 2011, an increase of 31% since 2000. Therefore, this article will discuss the current situation of electricity generation by renewable energy in Malaysia, the expected outcomes of LSS implementation, and showcase the LSS project by Tadau Energy Sdn. Bhd. in Kudat.

  • PDF

An Optimal Decision Model for Capacity and Inclining Angle of Residential Photovoltaic Systems (주택용 태양광발전시스템의 적정 용량 및 설치각 선정을 위한 최적화 모델 연구)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1046-1052
    • /
    • 2010
  • In residential house, photovoltaic (PV) system among various alternatives in renewable energy system is the most efficient and feasible solution for reducing energy consumption and electricity cost. However, relatively high initial cost make people reluctant to install PV system in their houses. Therefore, in the initial state for PV system installation in the house, it is very important to decide proper capacity of the PV system considering the expected energy usage and solar energy supplying condition with the house. This paper proposes a novel optimization model for deciding appropriate capacity of the PV system for residential house. The objective function of the model is to minimize the annual cost including electricity bill, operation and maintenance cost, and annual fixed cost calculated from the initial installation cost based on capital recovery factor (CRF). The model also shows the optimal inclining angle of PV panels of the system. In this paper, we estimate the PV output using PVWATTS (PV simulator of Office of Energy Efficiency and Renewable Energy) and find optimal solutions by Sequential Quadratic Programming (SQP) method using MATLAB software. The proposed approach is finally applied to a residential model house in Gangneung, Gangwon-Do and verified its feasibility for adopting to PV system design for residential houses.

Study on the Analysis Performance of PVT system using the Dynamic Simulation (동적 시뮬레이션을 이용한 태양광열 시스템의 성능특성 분석)

  • Kim, Sang-Yeal;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: A photovoltaic/thermal system is a solar collector combining photovoltaic module with a solar thermal collector, which produces electricity and heat at the same time. PVT system removes heat from PV module through air or liquid that would help to raise the efficiency of the PV systems performance. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. However, even though various of PVT system were developed and several systems were applied to practical use, there have been few researches for the performance analysis using the dynamic simulation. Method: In this study, the review of recent research and development trend for PVT systems were conducted. Furthermore, in order to develop the optimum design method, the performance analysis for PVT system was conducted by a dynamic simulation. Result: In the results, it was found that the performance of PVT system significantly depends on the ambient temperature and solar radiation. Moreover, in the weather condition of Seoul, average efficiency of electricity and heat in heating season were 13.79 and 41.85%, and they in cooling season were 14.39% and 26.18%, respectively.

Power Pattern Analysis According to Irradiation and Module Temperature for Photovoltaic Systems (태양광 발전시스템의 모듈온도와 일사량에 따른 전력 패턴 분석)

  • Hong, Jung-Hee;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.174-176
    • /
    • 2009
  • This paper aims to investigate generation conditions necessary for the most efficient generation by measuring electricity power under various irradiation conditions, since the photovoltaic generation system has high costs and low efficiency. This thesis aims to investigate generation conditions necessary for the most efficient generation by measuring electricity power under various irradiation conditions, since the photovoltaic generation system has high costs and low efficiency. Although the generation power increased with the irradiation, the former did not vary directly as the latter. This meant that the variation of the generation power was concerned in the temperature of a module, the ambient temperature, and the directions of irradiation as well as the irradiation. As for the monthly accumulated irradiation and monthly accumulated power, the maximum irradiation and generation power were observed in May and October and the irradiation, the power and the accumulated generation power were all the highest in spring, followed by fall, summer and winter.

  • PDF

Techno-economic design of a grid-tied Photovoltaic system for a residential building

  • Asad A. Naqvi;Talha Bin Nadeem;Ahsan Ahmed;Muhammad Uzair;S. Asad Ali Zaidi
    • Advances in Energy Research
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 2022
  • Increasing cost of electricity due to rising price of fuel is one of the local community's main issues. In this research, switching of grid dependent system to the grid-tied Photovoltaic (PV) system with net metering for a residential building is proposed. The system is designed by considering the maximum energy demand of the building. The designed system is analyzed using RETScreen on technical, economic and environmental grounds. It is found that the system is able to produce 12,000 kWh/year. The system is capable to fulfill the electricity demand of the building during day time and is also capable to sell the energy to the local grid causing the electric meter to run in reverse direction. During night time, electricity will be purchased from grid, and electric meter will run in the forward direction. The system is economically justified with a payback period of only 3 years with net present value of PKR. 4,758,132. Also, the system is able to reduce 7.2 tons of CO2 not produced in the entire life of the project.

The Development of Performance Evaluation Program of Building Integrated Photovoltaic System (건물일체형 태양광발전 시스템 성능평가 프로그램 개발)

  • Kim, Beob-Jeon;Park, Jae-Wan;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: In design and planning Building Integrated Photovoltaic(BIPV) system can reduce cost by replacing building facade as construction material such as roofs, outer walls and windows as well as generating electricity. BIPV system should be applied at the early stage of architectural design. However, it is hard to decide whether using BIPV system or not for architects and builders who are not professional at BIPV system because performance of system is considerably influenced by types of module, installation position, installation methods and so on. It is also hard for experts because commercialized analytical program of photovoltaic systems is too complicated to use and domestic meteorological data is limited to partial areas. Therefore, we need evaluation program of BIPV system which can easily but accurately interpret generating performance and evaluate validity of BIPV system at the early stage of architectural design even for inexpert. Method: In this study, we collected meteorological data of domestic major region and analyzed generation characteristic of BIPV system by using PVsyst(commercialized software) in accordance with regions, types of solar module, place and methods of installation and so on. Based on this data, we developed performance evaluation program of BIPV system named BIPV-Pro, through multiple regression analysis and evaluated its validity. Result: When comparing predictive value of annual average PR and annual electricity production of BIPV-Pro an that of PVsyst, each of root mean square error was 0.01897 and 123.9.

A feasibility study on the hybrid power generation system considering of electricity needs' fluctuation of coastal area's houses (해안지역 주거시설을 위한 전력수요 변동 대응형 하이브리드 발전시스템 도입 효과 예측에 관한 사례연구)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.977-983
    • /
    • 2013
  • Based on the consideration of the hourly patterns of the electricity power consumption, this study predicted the effectiveness of hybrid power generation system, which is composed with wind power generator and photovoltaic generator. And this case study is performed at Konrido, which is a affiliated island of Kyeongsangnam-do. As the results, it is obvious that it is not efficient to cover the whole electricity power consumption only with any single power generating system, because the hourly patterns of electricity power consumption, wind power generation and photovoltaic generation are quite different. And because the wind is being through almost 24 hours, it is also found out that wind power generating system with storage battery is the most efficient combination for this case study.