• Title/Summary/Keyword: Photovoltaic devices

Search Result 345, Processing Time 0.038 seconds

Active Materials for Energy Conversion and Storage Applications of ALD

  • Sin, Hyeon-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.75.2-75.2
    • /
    • 2013
  • Atomic layer deposition (ALD), utilizing self-limiting surface reactions, could offer promising perspectives for future efficient energy conversion devices. The capabilities of ALD for surface/interface modification and construction of novel architectures with sub-nanometer precision and exceptional conformality over high aspect ratio make it more valuable than any other deposition methods in nanoscale science and technology. In the context, a variety of researches on fabrication of active materials for energy conversion applications by ALD are emerging. Among those materials, one-dimensional nanotubular titanium dioxide, providing not only high specific surface area but also efficient carrier transport pathway, is a class of the most intensively explored materials for energy conversion systems, such as photovoltaic cells and photo/electrochemical devices. The monodisperse, stoichiometric, anatase, TiO2 nanotubes with smooth surface morphology and controlled wall thickness were fabricated via low-temperature template-directed ALD followed by subsequent annealing. The ALD-grown, anatase, TiO2 nanotubes in alumina template show unusual crystal growth behavior which allows to form remarkably large grains along axial direction over certain wall thickness. We also fabricated dye-sensitized solar cells (DSCs) introducing our anatase TiO2 nanotubes as photoanodes, and studied the effect of blocking layer, TiO2 thin films formed by ALD, on overall device efficiency. The photon convertsion efficiency ~7% were measured for our TiO2 nanotubebased DSCs with blocking layers, which is ~1% higher than ones without blocking layer. We also performed open circuit voltage decay measurement to estimate recombination rate in our cells, which is 3 times longer than conventional nanoparticulate photoanodes. The high efficiency of our ALD-grown, anatase, TiO2 nanotube-based DSCs may be attributed to both enhanced charge transport property of our TiO2 nanotubes photoanode and the suppression of recombination at the interface between transparent conducting electrode and iodine electrolytes by blocking layer.

  • PDF

A Study on the Customer Voltage Characteristic Based on the Test Devices for PV Systems (태양광전원 계통연계 시험장치에 의한 수용가전압 특성에 관한 연구)

  • Park, Hyeon-Seok;Son, Joon-Ho;Ji, Seong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4529-4536
    • /
    • 2010
  • This paper develops an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV systems simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and load factor. This paper also proposes a new calculation algorithm for voltage profile to make a comparison between calculation values and test device values. The results show that the test results for the normal operation characteristics of PV systems is very practical and effective.

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat;Tan, Sin Tee;Chong, Kok-Keong;Lee, Hock Beng;Ginting, Riski Titian;Lim, Fang Sheng;Yap, Chi Chin;Tan, Chun Hui;Chang, Wei Sea;Jumali, Mohammad Hafizuddin Hj
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1564-1570
    • /
    • 2018
  • Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.

Development of Spray Thin Film Coating Method using an Air Pressure and Electrostatic Force (공압과 정전기력을 이용한 스프레이 박막 코팅 기술 개발)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.567-572
    • /
    • 2013
  • In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

Synthesis and Characterization of Novel Hydrogenated Poly(norbornene bisimide)s Prepared from Ring Opening Metathesis Polymerization

  • Yoon, Kyung-Hwan;Park, Seung-Beom;Park, In-Sook;Yoon, Do-Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3074-3080
    • /
    • 2011
  • We synthesized three novel poly(norbornene bisimide)s by ring opening metathesis polymerization (ROMP) and subsequent hydrogenation. Their thermal, mechanical and optical properties were investigated with TGA, DMA, UV-Vis spectrometer, and optical reflectometer. The new polymers showed high glass transition temperatures over $260^{\circ}C$ and good thermal stability with 5% wt-loss temperature higher than $390^{\circ}C$. When solvent casted, they yielded optically transparent and dimensionally stable films with a relatively low coefficient of thermal expansion of about 50 ppm $K^{-1}$. Therefore, the bisimide moieties substantially enhanced thermal and dimensional stabilities, as compared with normal ROMP-prepared polynorbornene films. Though the water uptake was increased to 0.6 wt-%, this water uptake is still considerably lower than that for polyethersulfones (1.4 wt-%) or polyimides (2.0 wt-%). Hence, the new poly(norbornene bisimide)s may become attractive candidates for flexible substrates of optoelectronic devices such as displays and photovoltaic solar cells.

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction

  • Wojcik, Mariusz;Michalak, Przemyslaw;Tachiya, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.795-802
    • /
    • 2012
  • Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.

New Design and Synthesis of Donor-Acceptor units by Introducing Boron Based to Non-Boron based Semiconductor for high Voc OPV

  • Ryu, Ka Yeon;Cho, Kyuwan;Kim, Won-Suk;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.432.2-432.2
    • /
    • 2016
  • A new A-D-A type (Acceptor-Donor-Acceptor) conjugated based on pyridine-borane complex (Donor), non-boron fluorine (Donor) and 2,5-bis(alkyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) (Acceptor) were designed and synthesized via Pd-catalyzed Suzuki cross-coupling reaction. The synthesized boron based complex exhibited high electron affinity, which indicates deep HOMO energy levels and good visible absorption led to their use as donors in BHJ (bulk heterojunction) solar cells. Inverted devices were fabricated, reaching open-circuit voltage as high as 0.91eV. To probe structure-property relationship and search for design principle, we have synthesized pyridine-boron based electron donating small molecules. In this study, we report a new synthetic approach, molecular structure, charge carrier mobility and morphology of blended film and their correlation with the photovoltaic J-V characteristics in details.

  • PDF

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber

  • Ogura K.;Chandhaket S;Nagai S;Ahmed T;Nakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge-resonant snubber which is used for power conditioner such as solar photovoltaic generation and fuel cell generation. The experimental results of boost chopper fed ZVS-PWM DC-DC converter are evaluated. In audition to its switching voltage and current waveforms, and the switching v-i trajectory of the power devices are discussed and compared with the conventional hard switching DC-DC converter treated here. The temperature performance of IGBT module,, efficiency, and EMI noise characteristics of this ZVS-PWM DC-DC converter using IGBTs are measured and evaluated from an experimental point of view.

  • PDF

Design Analysis of Crystalline Silicon Solar Cell Using 1-Dimensional Modelling (1차원 모델링을 이용한 결정질 실리콘 태양전지의 디자인 해석)

  • Kim, Dong-Ho;Park, Sang-Wook;Cho, Eun-Chel
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.571-576
    • /
    • 2008
  • The simulation program for solar cells, PC1D, was briefly reviewed and the device modeling of a multicrystalline Si solar cell using the program was carried out to understand the internal operating principles. The effects of design parameters on the light absorption and the quantum efficiency were investigated and strategies to reduce carrier recombination, such as back surface field and surface passivation, were also characterized with the numerical simulation. In every step of the process, efficiency improvements for the key performance characteristics of the model device were determined and compared with the properties of the solar cell, whose efficiency (20.3%) has been confirmed as the highest in multicrystalline Si devices. In this simulation work, it was found that the conversion efficiency of the prototype model (13.6%) can be increased up to 20.7% after the optimization of design parameters.

Simulations of Optical Characteristics according to the Silicon Oxide Pattern Distance Variation using an Atomic Force Microscopy (AFM) (AFM을 이용한 나노 패턴 형성과 크기에 따른 광특성 시뮬레이션)

  • Hwang, Min-Young;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.440-443
    • /
    • 2010
  • We report a top-down approach based on atomic force microscopy (AFM) local anodic oxidation for the fabrication of the nano-pattern field effect transistors (FETs). AFM anodic oxidation is relatively a simple process in atmosphere at room temperature but it still can result in patterns with a high spatial resolution, and compatibility with conventional silicon CMOS process. In this work, we study nano-pattern FETs for various cross-bar distance value D, from ${\sim}0.5\;{\mu}m$ to $1\;{\mu}m$. We compare the optical characteristics of the patterned FETs and of the reference FETs based on both 2-dimensional simulation and experimental results for the wavelength from 100 nm to 900 nm. The simulated the drain current of the nano-patterned FETs shows significantly higher value incident the reference FETs from ${\sim}1.7\;{\times}\;10^{-6}A$ to ${\sim}2.3\;{\times}\;10^{-6}A$ in the infrared range. The fabricated surface texturing of photo-transistors may be applied for high-efficiency photovoltaic devices.