Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.6.440

Simulations of Optical Characteristics according to the Silicon Oxide Pattern Distance Variation using an Atomic Force Microscopy (AFM)  

Hwang, Min-Young (Department of Electronic Materials Engineering, Kwangwoon University)
Moon, Kyoung-Sook (Department of Mathematics and Information, Kyungwon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.6, 2010 , pp. 440-443 More about this Journal
Abstract
We report a top-down approach based on atomic force microscopy (AFM) local anodic oxidation for the fabrication of the nano-pattern field effect transistors (FETs). AFM anodic oxidation is relatively a simple process in atmosphere at room temperature but it still can result in patterns with a high spatial resolution, and compatibility with conventional silicon CMOS process. In this work, we study nano-pattern FETs for various cross-bar distance value D, from ${\sim}0.5\;{\mu}m$ to $1\;{\mu}m$. We compare the optical characteristics of the patterned FETs and of the reference FETs based on both 2-dimensional simulation and experimental results for the wavelength from 100 nm to 900 nm. The simulated the drain current of the nano-patterned FETs shows significantly higher value incident the reference FETs from ${\sim}1.7\;{\times}\;10^{-6}A$ to ${\sim}2.3\;{\times}\;10^{-6}A$ in the infrared range. The fabricated surface texturing of photo-transistors may be applied for high-efficiency photovoltaic devices.
Keywords
Atomic force microscopy (AFM); Field effect transistors (FETs); Nano-pattern; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 SILVACO International, ATLAS User's Manual, Version 5.12.0.R. USA, SILVACO International Incorporated, pp. 1-898, 2007.
2 N. Elfstrom, A. E. Karlstrom, and J. Linnros, Nano. Lett. 8, 3 (2008).
3 M. Skupinski, J. Jensen, A. Johansson, G. Possnert, M. Boman, K. Hjort, and A. Razpet, J. Vac. Sci. Technol. B 25, 3 (2007).
4 Y. Cao, S. Ding, T. Sun, Y. Yan, and Q. Zhao, J. Vac. Sci. Technol. B 27, 3 (2009).
5 S. Gwo, T. Yasuda, and S. Yamasaki, J. Vac. Sci. Technol. A 19, 4 (2001).
6 E. S. Snow, W. H. Juan, S. W. Pang, and P. M. Cambel, Appl. Phys. Lett. 66, 1792 (1995).
7 S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Appl. Phys. Lett. 94, 082107 (2009).   DOI
8 D. Stievenard and B. Legrand, Progress in surf. Sci. 81, 112 (2006).   DOI
9 D. Stevenard, P. A. Fontaine, and E. Dubois, Appl. Phys. Lett. 70, 20 (1997).