• 제목/요약/키워드: Photovoltaic current

검색결과 971건 처리시간 0.028초

랜덤 환경조건 기반의 태양광 모듈 인공신경망 모델링 (Artificial Neural Network Modeling for Photovoltaic Module Under Arbitrary Environmental Conditions)

  • 백지혜;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.110-115
    • /
    • 2022
  • Accurate current-voltage modeling of solar cell systems plays an important role in power prediction. Solar cells have nonlinear characteristics that are sensitive to environmental conditions such as temperature and irradiance. In this paper, the output characteristics of photovoltaic module are accurately predicted by combining the artificial neural network and physical model. In order to estimate the performance of PV module under varying environments, the artificial neural network model is trained with randomly generated temperature and irradiance data. With the use of proposed model, the current-voltage and power-voltage characteristics under real environments can be predicted with high accuracy.

태양광 발전 시스템의 무순단 MPPT 운전 모드 절체 기법 (Seamless Transfer Method of MPPT for Two-stage Photovoltaic PCS)

  • 박종화;조종민;안현성;차한주
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.233-238
    • /
    • 2018
  • This paper proposes a seamless MPPT operation mode transfer method of photovoltaic system. The photovoltaic system consists of a DC-DC boost converter, a DC-Link, and a 3-level neutral point clamp (NPC) type inverter. The PV voltage fluctuates due to the output characteristics of the solar pane1 depending on the irradiation amount and the temperature. The photovoltaic system requires seamless MPPT mode transfer method that the discontinuity does not occur in order to supply the stable power to system without affecting the fluctuation of the PV voltage. MPPT operation is divided into two modes by the voltage reference. Under the condition that the PV voltage is below 650V, the DC-DC boost converter performs MPPT through duty control based on perturb & observe (P&O) method, and the inverter conducts DC-link voltage and grid current controls in synchronous reference frame. On the other hand, when the PV voltage exceeds above 650V, inverter performs MPPT in accordance with the variation of DC-link voltage control while the converter stops operating. Two MPPT operation modes is smoothly transferred through the proposed method that DC-link voltage or grid current commands are appropriately adjusted from the certain criteria. The feasibility of the MPPT operation mode transfer method is verified using a 10kW solar photovoltaic system, experimental results have good performances that the fluctuation of PV current is reduced to 100%.

능동 클램프 전류원 하프 브릿지 기반 태양광 모듈 집적형 전력변환장치에 대한 연구 (Study On Photovoltaic Module Integrated Converter based on Active Clamp Current-fed Half-Bridge Converter)

  • 정훈영;박정규;지용혁;원충연;이태원
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.105-113
    • /
    • 2011
  • 태양광 발전 시스템이 대용량화됨에 따라 태양전지 어레이 구성 시 부정합(mismatch) 문제가 대두되는 가운데, 태양전지 모듈을 직접 계통에 연계하는 AC 모듈형 태양광 모듈 집적형 전력변환장치(PV-MIC)에 관한 연구가 지속되고 있다. PV-MIC는 수명 및 고효율이 가장 큰 문제이며 이 문제를 해결하기 위해서 본 논문에서는 ZVS 동작을 통하여 스위칭 손실을 저감시키고 입력전류 리플감소를 통하여 입력 커패시턴스를 저감할 수 있는 능동 클램프 전류원 하프 브릿지 컨버터를 적용한 PV-MIC를 제안하고, 이에 관한 제어분담 및 설계에 대하여 고찰한다.

PSCAD/EMTDC를 이용한 태양광 발전시스템의 배전계통 연계운전을 위한 모델링 (Modeling for Utility Interactive Photovoltaic Power Generation System using PSCAD/EMTDC)

  • 김우현;강민규;김응상;김지원;노병권;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1180-1182
    • /
    • 1999
  • Modeling for utility interactive photovoltaic power generation system has been studied using PSCAD/EMTDC. The proposed model system consists of a simple utility circuit configuration, 3kW of single phase utility interactive photovoltaic system, single phase PWM voltage source inverter module, and feed forward PID controller as control circuit. In the system, the DC current is assumed constant, and the voltage source inverter provides sinusoidal ac current for the loads of utility system. The simulation results are given in order to verify the effectiveness of the proposed model. The phases of output voltage of utility system and the output current of the inverter module are compared. Especially, the compensation effect of the photovoltaic system for the unbalanced load is analyzed. and the transient phenomena for a phase to ground fault are also simulated.

  • PDF

Si-ZnO n-n 이종접합의 구조 및 전기적 특성 (The Structure and Electrical Properties of Si-ZnO n-n Heterojunctions)

  • 이춘호;박순자
    • 한국세라믹학회지
    • /
    • 제23권1호
    • /
    • pp.44-50
    • /
    • 1986
  • Si-ZnO n-n heterojunction diodes were prespared by r.f diode sputtering of the sintered ZnO target on n-type Si single crystal wafers and their structures and electrical properties were studied. The films were grown orientedly with the c-axis of crystallites perpendicular to the substrate surface at low r.f. powder and grown to polycrystalline films with random orientation at high r. f. powder. The crystallite size increased with the increasing substrate temperture The oriented texture films only were used to prepare the photovoltaic diodes and these didoes showed the photovoltaic effect veing positive of the ZnO side for the photons in the wavelength range of 380-1450nm. The sign reversal of phootovoltage which is the property os isotype heterojunction was not observed because of the degeneration of the ZnO films. The diode showed the forward rectification when it was biased with the ZnO side positive. The current-voltage characteristics exhibited the thermal-current type relationship J∝exp(qV/nkT) with n=1.23 at the low forward bias voltage and the tunnelling-current type relationship J∝exp($\alpha$V) where $\alpha$ was constant independent of temperature at the high forward bias voltage. The crystallite size of ZnO films were influenced largely on the photovoltaic properties of diodes ; The diodes with the films of the larger crystallites showed the poor photovoltaic properties. This reason may be cosidered that the ZnO films with the large crystallites could not grow to the electrically continuous films because the thickness of films was so thin in this experiment.

  • PDF

새로운 방식의 단상 인버터를 이용한 태양광 시스템 구현 (A New Solar Energy Conversion System Implemented using Single Phase Inverter)

  • 홍정표;김태화;원태현;권순재;홍순일;김종달
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.488-491
    • /
    • 2006
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter with photovoltaic system. The maximum power point tracking control is based on generated circuit control MOSFET switch of boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of the system. Furthermore, the generation control circuit attenuates low-frequency ripple voltage, which is caused by the full-bridge inverter, across the photovoltaic modules. Consequently, the output power of system is increased due to the increase in average power generated by the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

  • PDF

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조 (Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates)

  • 장은석;김솔지;이지은;안승규;박주형;조준식
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

PV모듈의 바이패스 다이오드 단락 고장 시 태양광어레이 회로 특성분석 (Electric Circuit Analysis for PV Array on Short-Circuit Failure of Bypass Diode in PV Module)

  • 이충근;신우균;임종록;황혜미;주영철;정영석;강기환;장효식;고석환
    • 한국태양에너지학회 논문집
    • /
    • 제39권6호
    • /
    • pp.15-25
    • /
    • 2019
  • As the installation of photovoltaic systems increases, fire accidents of PV system grow every year. Most of PV system fires have been reported to be caused by electrical components. The majority of fire accidents occurred in combiner box, which is presumed to be short-circuit accidents due to dustproof and waterproof failures or heat deterioration of blocking diode. For this reason, the blocking diode installation became optional by revised PV combiner regulation. In this paper, according to the revised regulation, reverse current that generated by voltage mismatch was measured and analyzed in PV array without a blocking diode. The factors that cause voltage mismatch in array are assumed to be shaded PV module and short circuit failure of bypass diode. As the result of experiment, there is no reverse current to flow under shading condition in module, but reverse current flows on the failure of bypass diode in module. According to the module's I-V characteristic curve analysis, open voltage was slightly reduced due to operation of bypass diode in shading. However, it showed that open circuit voltage has decreased significantly in the failure of bypass diode. This indicates that the difference in open voltage reduction of voltage mismatch factor causes reverse current to flow.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.