• Title/Summary/Keyword: Photovoltaic cell

Search Result 1,092, Processing Time 0.024 seconds

Status of Photovoltaics in the world (세계 태양광발전산업 현황)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Park, Kyung-Eun;Kim, Hyun-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.86-91
    • /
    • 2008
  • Amid the booming research on new and renewable energy, the photovoltaic(PV) industry has been growing around the PV advanced countries such as Japan, Germany, Europe and USA. In recent years, China became a strong performer in the world PV market share, increasing solar cell production rapidly. Both world solar cell and module production and installation rose steadily in 2007 like recent bumper years. In 2007, the PV industry produced 4.28GW and the installations reached a record high of 2.83GW, representing growth of 60percent over the previous year.

  • PDF

Photovoltaic Power Generation Control by A Partial Resonant Buck-Boost chopper circuit (부분공진 승강압 초퍼회로에 의한 태양광발전제어)

  • Byun, H.G.;Moon, S.P.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.413-415
    • /
    • 1997
  • The solar cell has an optimum operating point to be able to get maximum power. To obtain maximum power from Photovoltaic array, potovolt aic power syste usually requres maximum power point tracking controller. The output characteristics of solar cell are nonlinear, and these characteristics vary with load solar insolation, solar cell temperature. Therefore the tracking control of maximum power point is the complicated problem. This paper presents power characteristics of residential Photovoltaic system applying a quck-boost conversion system.

  • PDF

A Novel Single Converter and Single Inverter (1Con-1Inv) Topology and Control Algorithm for Photovoltaic-Fuel Cell Hybrid System (태양광-연료전지 하이브리드 발전을 위한 새로운 단일 컨버터 및 단일 인버터 (1Con-1Inv) 회로 및 제어 알고리즘)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Won, Chung-Yuen;Lee, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2200-2208
    • /
    • 2009
  • This paper presents a novel single converter and single inverter (1Con-1Inv) topology for photovoltaic (PV)-fuel cell (FC) hybrid system and a new control scheme for the PV-FC hybrid system is then proposed. The new topology and the unique algorithm can minimize volume and production cost of the hybrid system. Moreover, system efficiency can improve due to reduction of losses of hardware components and other control factors are well regulated using just 1Con-1Inv with the help of the proposed control algorithm. The validity of proposed algorithm is verified both computer simulation using PSIM and Matlab/Simulink program and experimental with 700W of PV and 600W of FC system.

A Battery Charger Using Photovoltaic Energy Harvesting with MPPT Control (빛 에너지 하베스팅을 이용한 MPPT 제어 기능을 갖는 배터리 충전기)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.201-209
    • /
    • 2015
  • This paper describes a battery charger using photovoltaic energy harvesting with MPPT control. The proposed circuit harvests maximum power from a PV(photovoltaic) cell by employing MPPT(Maximum Power Point Tracking) control and charges an external battery with the harvested energy. The charging state of the battery is controlled according to the signals from a battery management circuit. The MPPT control is implemented using linear relationship between the open-circuit voltage of a PV cell and its MPP voltage such that a pilot PV cell can track the MPP of a main PV cell in real time. The proposed circuit is designed in a $0.35{\mu}m$ CMOS process technology and its functionality has been verified through extensive simulations. The maximum efficiency of the designed entire system is 86.2% and the chip area including pads is $1.35mm{\times}1.2mm$.

Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber (진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템)

  • Kim, Chang-Hee;Jeon, Dong-Hwan;Kong, San-Gun;Kim, Jong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF

The Electrical Characteristics of Shading Effect in Photovoltaic Module (PV모듈에서 그림자에 의한 전기적 특성)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Ji-Hong;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.257-262
    • /
    • 2008
  • In this paper, we study the electric characteristics of shading effects in photovoltaic module in case of outdoor operation. When fabricating PV module, solar cells are connected serially to obtain the high voltage because of its low open circuit voltage. And total current is determined by lowest current among solar cells. When the shading happens on PV module's surface, the current of shaded solar cell determine the total current flow. Because of this, generally by-pass diode is installed on junction box. The bypass diode operate when revered and shaded solar cell's voltage is over 0.6 voltage. The reverse-biased solar cell gives reduced maximum power of PV module and might give negative effect on durability. So, adequate by-pass installation and selection is needed.

  • PDF

The Electrical Characteristics of PV Module by the Stress in accordance with Mechanical Weight Load (기계적 하중에 따른 스트레스로 인한 PV 모듈의 전기적 특성)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.104-109
    • /
    • 2009
  • If the Photovoltaic(PV) Module should get physical load, the PV module will be warped according to elongation of the front glass and then micro-crack will be occurred in the heat sealed Solar Cell. This micro-crack drops output of the short circuit current and the open circuit voltage of the PV Module. This is because of increase of resistance component by micro-crack. Micro-crack at specific Solar Cell in the module reduces the durability of PV Module such as less output, Hot-Spot in the PV module caused by Solar Cell output mismatch, heat generating as resistance component caused by micro-crack. In this study, among some factors which effect to the output of crystalline PV Module, we will see how the micro-crack caused by mechanical stress effects to the electrical output of PV Module.

  • PDF

Modeling and Analysis of The Buck Converter in Photovoltaic Power Conditioning System (태양광 발전 시스템에서의 벅 컨버터 모델링과 해석)

  • Jung, Seung-Hwan;Choy, Ick;Choi, Ju-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.1039-1048
    • /
    • 2013
  • Generally, the buck converter controller was designed to control output voltage of the converter. However, design of the controller in photovoltaic power conditioning system is different from general design. the controller in photovoltaic power conditioning system controls input voltage of the converter(output voltage of the solar cell) for MPPT(Maximum Power Point Tracking). This paper proposes novel buck converter model which can control input voltage of the converter. We integrate this model with a model of solar cell. and linearize at the operating point(MPP). In addition, we determine whether or not suitable for the general linear controller design into small and large signal analysis.

The performance analysis of photovoltaic module accounting for solar cell degradation and series resistance (태양전지 셀의 열화와 직렬저항의 변화에 따른 태양전지 모듈의 특성 해석)

  • Park, Chi-Hong;Kang, Gi-Hwan;Waithiru, L.;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.28-29
    • /
    • 2006
  • When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.

  • PDF

Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System (태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터)

  • Kim, Kyoung-Tak;Jeon, Young-Tae;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.