• 제목/요약/키워드: Photovoltaic (PV) power system

검색결과 770건 처리시간 0.028초

The Tracking Photovoltaic System by One sensor Type (One sensor방식의 추적식 PV System)

  • Ko, Jae-Hong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제13권10호
    • /
    • pp.4733-4739
    • /
    • 2012
  • While traditional two-axis tracking systems with double sensors had been using two sensors to control azimuth and elevation angle of the sun so that a solar cell module would make a normal line with the sun, this paper proposed a new two-axis system that can achieve the same performance with only one sensor in it. It is Two-axis tracking system that control azimuth and elevation to control to be reduced for solar cell module as proposed tracking system uses 1 sensors and the sun always forms normal. Two-axis tracking system of one sensor method that propose in paper that could reduce electric power consumption and sees than fixed type preventing action and the most efficient driving and needless drive could confirm that generation efficiency of about 23 [%] increases. To heighten efficiency of solar cell doing to receive more sunlights chasing the sun, done tracking device have proceeded a lot of studies in large size way. Therefore, is expected that will do big part in the sun tracking supply through utility study about persistent generation efficiency constructing monitoring system of the sun tracking of this paper.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권8호
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.

Evaluation of Solar-Diesel-Battery Hybrid System for Off-Grid Rural Electrification in Myanmar

  • Win, Phyu Phyu;Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2138-2145
    • /
    • 2017
  • A hybrid system combining renewable technologies with diesel generators is a promising solution for rural electrification. Myanmar has many renewable energy resources, and many regions that cannot be supplied with electricity from the main grid. Therefore, in this study, we select a village in Myanmar, which is located far away from the substation, and evaluate the economic feasibility of a hybrid system for the village considering the specific local conditions and resource availability. We consider a hybrid system composed of a photovoltaic source, diesel generator, battery energy storage system, and converter. The load profiles of the household data from the village, and the solar radiation profiles are determined. The advantages of the hybrid system, in terms of cost, reliability, and environmental effects are analyzed through simulations using commercial software. The simulation results show that, for the selected village in Myanmar, a hybrid system with battery energy storage can reduce the cost and greenhouse gas emissions while maintaining reliability. We also obtain an optimized design in terms of the component size for the selected hybrid system with battery energy storage.

A Novel Digital Lock-In Amplifier Based Harmonics Compensation Method for the Grid Connected Inverter Systems (계통연계 인버터를 위한 디지털 록인 앰프 기반의 새로운 고조파 보상법)

  • Amin, Saghir;Ashraf, Muhammad Noman;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제25권5호
    • /
    • pp.358-368
    • /
    • 2020
  • Grid-connected inverters (GCIs) based on renewable energy sources play an important role in enhancing the sustainability of a society. Harmonic standards, such as IEEE 519 and P1547, which require the total harmonic distortion (THD) of the output current to be less than 5%, should be satisfied when GCIs are connected to a grid. However, achieving a current THD of less than 5% is difficult for GCIs with an output filter under a distorted grid condition. In this study, a novel harmonic compensation method that uses a digital lock-in amplifier (DLA) is proposed to eliminate harmonics effectively at the output of GCIs. Accurate information regarding harmonics can be obtained due to the outstanding performance of DLA, and such information is used to eliminate harmonics with a simple proportional-integral controller in a feedforward manner. The validity of the proposed method is verified through experiments with a 5 kW single-phase GCI connected to a real grid.

A Study on Simplified Robust Optimal Operation of Microgrids Considering the Uncertainty of Renewable Generation and Loads (신재생에너지와 부하의 불확실성을 고려한 마이크로그리드의 단순화된 강인최적운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제66권3호
    • /
    • pp.513-521
    • /
    • 2017
  • Robust optimal operation of a microgrid is required since the increase of the penetration level of renewable generators in the microgrid raises uncertainty due to their intermittent power output. In this paper, an application of probabilistic optimization method to economical operation of a microgrid is studied. To simplify the treatment of the uncertainties of renewable generations and load, the new 'band of virtual equivalent load variation' is introduced considering their uncertainties. A simplified robust optimization methodology to generate the scenarios within the band of virtual equivalent load variation and to obtain the optimal solution for the worst scenario is presented based on Monte Carlo method. The microgrid to be studied here is composed of distributed generation system(DGs), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems and wind power systems. The modeling of the objective function for considering interruption cost by the penalty function is presented. Through the case study for a microgrid with uncertainties, the validity of proposed robust optimization methodology is evaluated.

Performance Analysis of Hydrogen Based Hybrid System Using HOMER - a Case Study in South Korea (수소기반 신재생에너지 복합발전 시스템의 지역별 운영성과 분석 - HOMER를 활용한 사례 연구)

  • LEE, MYOUNG-WON;SON, MINHEE;KIM, KYUNG NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제29권6호
    • /
    • pp.606-619
    • /
    • 2018
  • This study focuses on the performance of hydrogen energy based hybrid system in terms of system reliability of electricity generation. With this aim to evaluate the off-grid system of photovoltaic (PV), wind turbine, electrolyzer, fuelcell, $H_2$ tank and storage batteries, 14 different sites in South Korea are simulated using HOMER. Performance analysis includes simulation on the different sites, verification of operational behaviors on regional and seasonal basis, and comparison among a control group. The result shows that the generation performance of hydrogen powered fuelcell is greatly affected by geographical change rather than seasonal effect. In addition, as the latitude of the hybrid systems location decrease, renewable power output and penetration ratio (%) increase under constant electrical load. Therefore, the hydrogen based hybrid system creates the stability of electricity generation, which best suits in the southern part of South Korea.

Impacts of green technologies in distribution power network

  • Suwanapingkarl, Pasist;Singhasathein, Arnon;Phanthuna, Nattaphong;Boonthienthong, Manat;Srivallop, Kwanchanok;Ketken, Wannipa
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.90-100
    • /
    • 2015
  • Green technologies such as renewable energy resources, Electric Vehicles and Plug-in Hybrid Electric Vehicles (EVs/PHEVs), electric locomotives, etc. are continually increasing at the existing power network especially distribution levels, which are Medium Voltage (MV) and Low Voltage (LV). It can be noted that the increasing level of green technologies is driven by the reduction emission policies of carbon dioxide ($CO_2$). The green technologies can affect the quality of power, and hence its impacts of are analysed. In practical, the environment such as wind, solar irradiation, temperature etc. are uncontrollable, and therefore the output power of renewable energy in that area can be varied. Moreover, the technology of the EVs/PHEVs is still developed in order to improve the performance of supply and driving systems. This means that these developed can cause harmonic distortion as the control system is mostly used power electronics. Therefore, this paper aims to analyse the voltage variation and harmonic distortion in distribution power network in urban area in Europe due to the combination between wind turbine, hydro turbine, photovoltaic (PV) system and EVs/PHEVs. More realistic penetration levels of SSDGs and EVs/PHEVs as forecasted for 2020 is used to analyse. The dynamic load demands are also taken into account. In order to ensure the accurate of simulation results, the practical parameters of distribution system are used and the international standards such as Institute of Electrical and Electronics Engineers (IEEE) standards are also complied. The suggestion solutions are also presented. The MATLAB/Simulink software is chosen as it can support complicate modelling and analysis.

Implementation and Economic Evaluation of Movable Power Supply Device for Electric Vehicle (EV용 이동형 전원공급장치의 구현 및 경제성 평가에 관한 연구)

  • Choi, Sung-Moon;Han, Byeong-Gill;Lee, Hu-Dong;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권12호
    • /
    • pp.77-86
    • /
    • 2020
  • Power quality problems caused by feeder voltage drop and extension construction cost problems can occur with the increasing utilization rates of the existing fixed-type EV (electric vehicle) charger. Moreover, EV users might not be able to access the EV charger due to a lack of EV charging facilities. Therefore, this paper proposes an MPSD (movable power supply device) for EVs to overcome user inconvenience caused by the insufficient number of chargers and extension cost issues. The proposed MPSD was mainly composed of a PV (photovoltaic) system, ESS (energy storage system), EV charging system, and monitoring and control system. Furthermore, there are three operation modes available to enhance the flexibility of the MPSD application, depending on the situation. This paper also presents an economical evaluation modeling using the present worth method to consider the cost and benefit elements. The simulation results based on proposed modeling showed that MPSD is more economical than the existing EV charger. Moreover, its profit can be increased significantly depending on the distance to the installation point.

A Study on Module-based Power Compensation Technology for Minimizing Solar Power Loss due to Shaded Area (음영지역 발생으로 인한 태양광 발전손실 최소화를 위한 모듈부착형 전력보상기술에 관한 연구)

  • Kim, Young-Baig;Song, Beob-Seong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제13권3호
    • /
    • pp.539-546
    • /
    • 2018
  • Recently, as the solar power generation market is rapidly increasing, interest is focused on research for minimizing the output of the solar cell module. The role of the power optimizer is important when inconsistencies occur in photovoltaic power generation. In the conventional system, centralized inverter method and microinverter method are mainly used. In this paper, we analyze the problem of power generation efficiency loss due to the incompatibility of existing system configuration methods. We also proposed a module - type power compensation method that can improve the mismatch caused by shading. The proposed module - based power optimizer is implemented and compared with the existing operation method. From the simulation result, it was confirmed that the efficiency of the proposed operation method is improved compared to the existing method.