• Title/Summary/Keyword: Photovoltaic (PV) power system

Search Result 770, Processing Time 0.029 seconds

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.

An analysis on the characteristic of inverter by the different factor both transformer and inductor (변압기 및 인덕터 구성에 따른 특성 분석)

  • An, Gyo-Sang;Im, Hui-Cheon;Kim, Sin-Seop;Hwang, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1348-1350
    • /
    • 2002
  • This paper describes an efficient comparison of the different factor both transformer and inductor. And also the 3 kW class inverter was fabricated for the analysis of the Photovoltaic(PV) power system's performance. The result of the performance of the 3 kW inverter showed that the total harmonics distortion(THD) was 3.19%, the conversion efficiency of the inverter was above 90 % at an over half load, respectively.

  • PDF

High-Frequency DC Link Inverter for Grid-connected PV System (계통연계형 태양광발전시스템을 위한 고주파 DC 링크 인버터)

  • Jung Young-Seok;Yu Gwon-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.46-49
    • /
    • 2001
  • An investigation into power conditioners that interface with photovoltaic array and utilities has been completed. The rating for this investigation is residential system(3-5kVA) that interface with a 220V single phase utility connection. As the result of this investigation, a 3kVA high frequency PWM IGBT inverter feeding a high frequency isolation transformer with a sinusoidal current wave was selected. The output of the transformer rectified with a diode bridge rectifier. four IGBT, used as 60Hz switched, reverse the polarity of the rectified current on every other half cycle of the utility voltage. Even though the high frequency link system used more power semiconductors, a net size, weight, and parts cost saving result compared to the other systems due to elimination of 60Hz transformer.

  • PDF

A Study of Grid-Connected PV System with Power Control Structure

  • Vu, Trung-Kien;Bae, Youngsang;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.329-330
    • /
    • 2012
  • The rising popularity of renewable energy sources resulted in development of the units of higher rated powers, where the large-scale plants and grid-connected type solar power systems are increased. Therefore, the importance of grid stabilization, which depends on each country or system-type, has been strengthened by different grid-codes or certifications. In this paper, the control scheme of three-phase photovoltaic system is enhanced, where both injected active and reactive powers are simultaneously controlled with the consideration of the certification of the Germany Association of Energy and Water Industries (BDEW). Experimental results are shown to verify the theoretical analysis.

  • PDF

A Study on Photovoltaic Generation System for Utility Interact (계통연계를 위한 태양광 발전시스템에 관한 연구)

  • Huh, Hwan;Park, Choon-Woo;Sung, Nark-Kuy;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.361-363
    • /
    • 1996
  • The output of solar cell should be operated in the maximum power point, since it is greatly fluctuated by insolation and temperature. Also, since the output of solar cell is a DC power, it needs the inverter to interact with utility line. In this paper, we made composed of PV system with a chopper that control the maximum power point and the inverter that drive to the high power factor and low harmonic by use of defected and compensated utility line voltage for synchronous phase with utility line.

  • PDF

Development of Stand-Alone Underground Water Pumping System using Photovoltaics System (태양광발전을 이용한 독립형 지하수 양수 시스템 개발)

  • Lee, Seung-Hun;Hwang, Jung-Hoon;Cho, Woon-Sik;Kim, Man-Il;Lee, Joon-Gee;Park, Moon-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, the Stand-alone underground water pumping system was developed that is consist of Submersible Pump (AC type), Photovoltaic Array and Power converter by the application of solar energy. And also wish to introduce system that is possible to supply of drinking water or water for agriculture using solar energy at desertification area or a Off-grid area, interior etc. and operation test results. This system can use in deep tube well of 200m range with common Submersible Pump and maximized to the quantity of pumping through M.P.P.T control. Also system availability raised through apply various driving mode.

  • PDF

A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems (독립형 태양광 발전소의 연 축전지 모니터링장치 개발)

  • Moon, Chae-Joo;Kim, Tae-Gon;Chang, Young-Hag;Kjm, Eui-Sun;Lim, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

Development of Novel Algorithm for Anti-Islanding of Grid-Connected PV Inverter (계통연계형 태양광 인버터의 단독운전 방지를 위한 새로운 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.76-86
    • /
    • 2011
  • This paper proposes novel algorithm for anti-islanding of grid-connected photovoltaic(PV) inverter. The islanding of PV systems can cause a variety of problems such as deterioration in power quality and electric shock. To prevent islanding, many anti-islanding methods are researched. Typical methods of anti-islanding are active frequency drift(AFD) and active frequency drift positive feedback(AFDPF). However, the AFD has problem that widely exists non diction zone(NDZ). The AFDPF is a method that improves the AFD method and is detected islanding by changing the chopping fraction(cf). However, The AFDPF does not detect when cf is very small and does not satisfy the IEEE Std. 929-2000 when cf is very big. Therefore, this paper proposes novel anti-islanding method that is simple to implement using virtual resister. The anti-islanding method proposed in this paper is compared with conventional method. The validity of this paper is proved using this result.

Evaluation of Electricity Generation According to Installation Type of Photovoltaic System in Residential Buildings (주거용 건물 태양광발전시스템의 설치유형에 따른 발전성능 평가)

  • Kim, Deok-Sung;Kim, Beob-Jeon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • The types of installation of the photovoltaic system applied to domestic residential buildings are classified as follows: Mounted modules with air circulation, semi-integrated modules with air duct behind, integrated modules with fully insulated back. In order to study generation characteristics of PV system, we verified the validity of interpretation program based on long-term measurement data of demonstration house installed in BAPV form and also analyzed the generation characteristics and performance of each installation type. The results are as follows. First, the RMSE of amount of generation and simulation according to annual daily insolation of demonstration system located in Daejeon was 0.98kWh and the range of relative error of monthly power generation was -5.8 to 3.1. Second, the average annual PR of mounted modules was 82%, semi-integrated modules 76.1% and integrated modules 71.9%. This differences were attributed to temperature loss. Third, the range of operating temperature of annual hourly photovoltaic modules was -6.5 to $61.0^{\circ}C$ for mounted modules, $-6.0{\sim}73.9^{\circ}C$ for semi-integrated modules and -5.5 to $88.9^{\circ}C$ for integrated modules. The temperature loss of each installation type was -14.0 to 16.1%, -13.8 to 21.9%, and -13.6 to 28.5%, respectively.

Development of Active MPPT Algorithm of PV system Considering Shadow Influence (그림자 영향을 고려한 PV 시스템의 능동형 MPPT 알고리즘 개발)

  • Mun, Ju-Hui;Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Kim, Soon-Young;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1384-1385
    • /
    • 2011
  • This paper presents the active maximum power point tracking(MPPT) control of the photovoltaic(PV) module integrated converter(MIC) system considering the shadow influence. Conventional perturbation and observation(PO) and incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, the active MPPT in which the step value changes by output change is presented. In case there are the solar radiation, a temperature and shadow influence, the presented algorithm treats and compares the conventional control algorithm and output error. In addition, the validity of the algorithm is proved through the output error response characteristics.

  • PDF