• 제목/요약/키워드: Photovoltaic (PV) power system

검색결과 770건 처리시간 0.029초

FNN에 의한 태양광 발전의 MPPT 제어 (MPPT Control of Photovoltaic by FNN)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1968-1975
    • /
    • 2009
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system.. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point(MPP) is accurately tracked.. The paper proposes a fuzzy neural network(FNN) control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. FNN has the advantages which are depicted both high performance and robustness in fuzzy control and high adaptive control in neural network.. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In this paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

공동주택 발코니 PV 연계 가정용 BESS의 에너지 절감 효과 분석 (Analysis of Energy Saving Effect of the Residential BESS Connected to the Balcony-PV in Apartment Houses)

  • 김차년;엄지영;김용기
    • 한국태양에너지학회 논문집
    • /
    • 제40권3호
    • /
    • pp.21-31
    • /
    • 2020
  • The government mandates gradually zero energy building and Photovoltaic power generation systems installed in buildings are emerging as the most realistic alternative to increase the independence rate of building energy. In this study, we propose a method to reduce the power consumption of households by increasing the PV capacity of balconies and applying the method used the charged electric power stored in batteries after sunset. In order to evaluate the electric power energy savings of the residential BESS, a balcony PV 1.2 kW and a battery pack 2 kWh were installed for 9 houses in 4 apartments in Seoul and Gyeonggi-do. The BESS is charged when the balcony PV is generated electric power, and when solar power generation is finished, it supplies power to the electric appliances connected to the load. As a result of installing the solar PV module 1.2 kW and 2 kWh class BESS for 3 households located in Seoul and Gyeonggi-do, the average electric power consumption saving rate was 40%. The reduction in electricity consumption in the case of zero generation surplus power by maximizing the utilization rate of BESS has been improved to about 53%. Therefore, in order to increase the self-sufficiency rate of electric energy in apartment houses, it is effective to increase the solar photovoltaic capacity of the balcony and apply the residential BESS. In the future, it is believed that the balcony PV and home BESS will play a key role in achieving mandatory zero-energy housing.

첨두부하 삭감효과를 갖는 UIPV시스템의 개선된 운용방법 (Improved Operating Method of Utility Interactive PV System for Peak Power Cut Effect)

  • 김영식;바이스갈랑;허혜성;최규하
    • 전력전자학회논문지
    • /
    • 제14권5호
    • /
    • pp.415-422
    • /
    • 2009
  • 본 논문은 기존의 시스템에 비해 시스템의 전력회로 구조의 큰 변경 없이 밧데리와 같은 전력저장 장치 디바이스의 추가와 개선된 운용방법을 적용한 첨두부하 삭감효과를 갖는 계통연계형 태양광발전시스템(UIPV)을 제안하였다. 개선된 운용방법과 에너지 저장장치의 추가로 기존 시스템에 비해 PV-array 용량을 작게 설치하여도 첨두부하 삭감효과를 크게 할 수 있으며, 가격 및 설치공간 등의 면에서 평가하여 기존시스템보다 더 나아짐을 확인하였다.

신재생에너지용 태양광 PCS 국내 기술기준 및 성능시험 (Domestic Technical Standards and Performance Test of Photovoltaic PCS for Renewable Energy)

  • 윤용호
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.479-484
    • /
    • 2018
  • This paper describes domestic technical standard of Photovoltaic(PV) PCS(Power Conditioning Systems)-Characteristics of the utility interface. This standard tests utility compatibility and personnel safety and equipment protection of PV inverter performance functions. Especially utility compatibility part includes test items of 1)voltage, current and frequency, 2)normal voltage operating range, 3)DC injection, 4)normal frequency operating range, 5)harmonics and 6)waveform distortion, 7)power factor of PV inverter. Therefore in this paper each test item of domestic technical standard is studied and analyzed and finally full tested by PV inverter performance function.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

PV시스템 최적화를 위한 손실요인 분석 (The Loss Factor Analysis for PV System Optimization)

  • 정영석;유병규;유권종;최주엽;소정훈
    • 전력전자학회논문지
    • /
    • 제11권1호
    • /
    • pp.22-28
    • /
    • 2006
  • PV(Photovoltaic) 시스템의 국내 이용보급이 확대되면서 PV시스템의 최적화 및 운전시에 발생되는 문제점에 대한 대책기술에 대한 실용화기술 확립의 중요성이 대두되고 있다. 본 논문에서는 PV시스템의 최적화를 통한 성능개선을 위해서 실측결과를 토대로 종합적인 성능특성을 분석 평가하여 PV시스템의 손실요인을 비교 분석하였다. 그리고 시뮬레이션과 실측결과를 비교하여 PV시스템의 주요 손실요인을 분석함으로서 성능저하 및 문제점에 대해서도 검토하였다.

능동 클램프 전류원 하프 브릿지 기반 태양광 모듈 집적형 전력변환장치에 대한 연구 (Study On Photovoltaic Module Integrated Converter based on Active Clamp Current-fed Half-Bridge Converter)

  • 정훈영;박정규;지용혁;원충연;이태원
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.105-113
    • /
    • 2011
  • 태양광 발전 시스템이 대용량화됨에 따라 태양전지 어레이 구성 시 부정합(mismatch) 문제가 대두되는 가운데, 태양전지 모듈을 직접 계통에 연계하는 AC 모듈형 태양광 모듈 집적형 전력변환장치(PV-MIC)에 관한 연구가 지속되고 있다. PV-MIC는 수명 및 고효율이 가장 큰 문제이며 이 문제를 해결하기 위해서 본 논문에서는 ZVS 동작을 통하여 스위칭 손실을 저감시키고 입력전류 리플감소를 통하여 입력 커패시턴스를 저감할 수 있는 능동 클램프 전류원 하프 브릿지 컨버터를 적용한 PV-MIC를 제안하고, 이에 관한 제어분담 및 설계에 대하여 고찰한다.

태양광-연료전지 하이브리드 발전을 위한 새로운 단일 컨버터 및 단일 인버터 (1Con-1Inv) 회로 및 제어 알고리즘 (A Novel Single Converter and Single Inverter (1Con-1Inv) Topology and Control Algorithm for Photovoltaic-Fuel Cell Hybrid System)

  • 김종수;최규영;이병국;원충연;이태원
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2200-2208
    • /
    • 2009
  • This paper presents a novel single converter and single inverter (1Con-1Inv) topology for photovoltaic (PV)-fuel cell (FC) hybrid system and a new control scheme for the PV-FC hybrid system is then proposed. The new topology and the unique algorithm can minimize volume and production cost of the hybrid system. Moreover, system efficiency can improve due to reduction of losses of hardware components and other control factors are well regulated using just 1Con-1Inv with the help of the proposed control algorithm. The validity of proposed algorithm is verified both computer simulation using PSIM and Matlab/Simulink program and experimental with 700W of PV and 600W of FC system.

Power Gain during Partial Shade Condition with Partial Shade Loss Compensation in Photovoltaic System

  • Yoon, Byung-Keun;Yun, Chul;Cho, Nae-Soo;Choi, Sang-Back;Jin, Yong-Su;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.769-780
    • /
    • 2018
  • This paper presents an analysis of the power gain under partial shading conditions (PSC) when the partial shade loss is being compensated in photovoltaic(PV) system. To analyze the power gain, our study divides the mismatch loss into partial shade loss and operating point loss. Partial shade loss is defined as the power difference between a normal string and a partially shaded string at the maximum power point (MPP). Operating point loss is defined as the power loss due to the operating point shift while following the MPP of the PV array. Partial shading in a PV system affects the maximum power point tracking (MPPT) control by creating multiple MPPs, which causes mismatch losses. Several MPPT algorithms have been suggested to solve the multiple MPP problems. Among these, mismatch compensation algorithms require additional power to compensate for the mismatch loss; however, these algorithms do not consider the gain or loss between the input power required for compensation and the increased output power obtained after compensation. This paper analyzes the power gain resulting from the partial shade loss compensation under PSC, using the V-P curve of the PV system, and verifies that power gain existence by simulation and experiment.

매틀랩/시뮬링크 기반 추적식 수상태양광 발전시스템의 모델링에 관한 연구 (A Study on Modeling of Tracking-Type Floating Photovoltaic System based on Matlab/Simulink)

  • 김인수;오승찬;김양모;최영관
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.805-811
    • /
    • 2015
  • Floating photovoltaic systems have been developed by the construction process such as design, construction, operation and management. Therefore, the power of floating photovoltaic systems has been calculated by using simple formulas and the optimal tracking interval is set by operation experience. But, flow characteristics have a decisive effect on it unlike land based PV systems. In this paper, a tracking floating photovoltaic system is modeled by using Matlab/simulink. The modeling for the floating photovoltaic system is verified through applying the flow characteristics based on actual operating data of 100㎾ class tracking floating photovoltaic.