• Title/Summary/Keyword: Photovoltaic (PV) System

Search Result 970, Processing Time 0.031 seconds

An analysis on the characteristic of inverter by the different factor both transformer and inductor (변압기 및 인덕터 구성에 따른 특성 분석)

  • An, Gyo-Sang;Im, Hui-Cheon;Kim, Sin-Seop;Hwang, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1348-1350
    • /
    • 2002
  • This paper describes an efficient comparison of the different factor both transformer and inductor. And also the 3 kW class inverter was fabricated for the analysis of the Photovoltaic(PV) power system's performance. The result of the performance of the 3 kW inverter showed that the total harmonics distortion(THD) was 3.19%, the conversion efficiency of the inverter was above 90 % at an over half load, respectively.

  • PDF

High frequency Linked Grid-Connected PV System for Residential Use (고주파링크 방식의 계통연계형 태양광발전시스템)

  • Jung, Y.S.;Yu, G.J.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1281-1283
    • /
    • 2001
  • An investigation into power conditioners that interface with photovoltaic array and utilities has been completed. The rating for this investigation is residential system(3-5kW) that interface with a 220V single phase utility connection. As the result of this investigation, a 3kW high frequency PWM IGBT inverter feeding a high frequency isolation transformer with a sinusoidal current wave was selected. The output of the transformer rectified with a diode bridge rectifier four IGBT, used as 60Hz switched, reverse the polarity of the rectified current on every other half cycle of the utility voltage. Even though the high frequency link system used more power semiconductors a net size, weight, and parts cost saying result compared to the other systems due to elimination of 60Hz transformer.

  • PDF

Stand-alone PV System without Battery (축전지 없는 태양광 시스템의 구성)

  • Hong, Jeng-Pyo;Park, Sung-Jun;Kwon, Soon-Jae;Kim, Jong-Dal;Sohn, Mu-Heon;Kim, Gyu-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.149-153
    • /
    • 2003
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 [W] prototype equipped with digital signal processor TMS320F241.

  • PDF

High frequency Linked Grid-Connected PV System for Residential Use (고주파링크 방식을 이용한 계통연계형 태양광발전시스템)

  • Jung, Y.S.;Yu, G.J.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.467-469
    • /
    • 2001
  • An investigation into power conditioners that interface with photovoltaic array and utilities has been completed. The rating for this investigation is residential system(3-5kW) that interface with a 220V single phase utility connection. As the result of this investigation, a 3kW high frequency PWM IGBT inverter feeding a high frequency isolation transformer with a sinusoidal current wave was selected. The output of the transformer rectified with a diode bridge rectifier, four IGBT, used as 60Hz switched, reverse the polarity of the rectified current on every other half cycle of the utility voltage. Even though the high frequency link system used more power semiconductors, a net size, weight, and parts cost saving result compared to the other systems due to elimination of 60Hz transformer.

  • PDF

Analysis of Application Elements for improvement in the generated electric power performance of balcony BIPV System (발코니형 BIPV시스템의 발전성능 향상을 위한 적용요소기술 분석)

  • Kim Hyun-Il;Yu Gwon-Jong;Kang Gi-Hwan;So Jung-Hoon;Lee Kil-Song
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1483-1485
    • /
    • 2004
  • Photovoltaic(PV) technology is a popular part of building vocabulary. It can be used today on both existing and new buildings. Its use in the building envelope is very varied and open ways, such as roofing materials, facades, skylights and shading systems, for creative designers. So, to activate this systems demand appropriate sources of information, performance data of elements and design tools offering architects and designer. Therefore this paper describe application elements for BIPV system and then predict improvement in the generated electric power performance of balcony BIPV system.

  • PDF

Cascaded Boost Multilevel Converter for Distributed Generation Systems

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.70-71
    • /
    • 2017
  • This paper presents a new cascaded boost multilevel converter topology for distributed generation (DG) systems. Most of DG systems, such as photovoltaic (PV), wind turbine and fuel cells, normally require the complex structure power converters, which makes the system expensive, complex and hard to control. However, the proposed converter topology can generate a much higher output voltage just by using the standard low-voltage switch devices and low voltage DC-sources in a simplified structure, also enhancing the reliability of the switch devices. Simulation and experimental results with a 1.2kW system are presented to validate the proposed topology and control method.

  • PDF

High-Frequency DC Link Inverter for Grid-connected PV System (계통연계형 태양광발전시스템을 위한 고주파 DC 링크 인버터)

  • Jung Young-Seok;Yu Gwon-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.46-49
    • /
    • 2001
  • An investigation into power conditioners that interface with photovoltaic array and utilities has been completed. The rating for this investigation is residential system(3-5kVA) that interface with a 220V single phase utility connection. As the result of this investigation, a 3kVA high frequency PWM IGBT inverter feeding a high frequency isolation transformer with a sinusoidal current wave was selected. The output of the transformer rectified with a diode bridge rectifier. four IGBT, used as 60Hz switched, reverse the polarity of the rectified current on every other half cycle of the utility voltage. Even though the high frequency link system used more power semiconductors, a net size, weight, and parts cost saving result compared to the other systems due to elimination of 60Hz transformer.

  • PDF

A Study of Grid-Connected PV System with Power Control Structure

  • Vu, Trung-Kien;Bae, Youngsang;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.329-330
    • /
    • 2012
  • The rising popularity of renewable energy sources resulted in development of the units of higher rated powers, where the large-scale plants and grid-connected type solar power systems are increased. Therefore, the importance of grid stabilization, which depends on each country or system-type, has been strengthened by different grid-codes or certifications. In this paper, the control scheme of three-phase photovoltaic system is enhanced, where both injected active and reactive powers are simultaneously controlled with the consideration of the certification of the Germany Association of Energy and Water Industries (BDEW). Experimental results are shown to verify the theoretical analysis.

  • PDF

A Decision Support System for Smart Farming in Agrophotovoltaic Systems (영농형 태양광 시스템에서의 스마트 농업을 위한 의사결정지원시스템)

  • Youngjin Kim;Junyong So;Yeongjae On;Jaeyoon Lee;Jaeyoon Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.180-186
    • /
    • 2022
  • Agrophotovoltaic (APV) system is an integrated system producing crops as well as solar energy. Because crop production underneath Photovoltaic (PV) modules requires delicate management of crops, smart farming equipment such as real-time remote monitoring sensors (e.g., soil moisture sensors) and micro-climate monitoring sensors (e.g., thermometers and irradiance sensors) is installed in the APV system. This study aims at introducing a decision support system (DSS) for smart farming in an APV system. The proposed DSS is devised to provide a mobile application service, satellite image processing, real-time data monitoring, and performance estimation. Particularly, the real-time monitoring data is used as an input of the DSS system for performance estimation of an APV system in terms of production yields of crops and monetary benefit so that a data-driven function is implemented in the proposed system. The proposed DSS is validated with field data collected from an actual APV system at the Jeollanamdo Agricultural Research and Extension Services in South Korea. As a result, farmers and engineers enable to efficiently produce solar energy without causing harmful impact on regular crop production underneath PV modules. In addition, the proposed system will contribute to enhancement of the smart farming technology in the field of agriculture.

Realtime Monitoring system of Residential Photovoltaic system (주택용 태양광발전시스템의 실시간 모니터링 기술)

  • Lim J.Y.;Kang B.B.;Yoon J.P.;Park S.J.;Yoon P.H.;Cha I.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.953-956
    • /
    • 2003
  • Digital environment that is represented to internet is displacing business way of industry and business achievement way with the fast speed being giving great change on life whole, improve existence business process utilizing internet and Web connection technology, information superhighway to tradition industrialist manufacture and e-transformation's propulsion that wish to maximize productivity and administration efficiency Is spread vigorously. In this paper, we wish to accomplish generation equipment's heighten stability and believability through remote monitoring and control of PV system. This paper describes the design of the monitoring system for sensing the monitoring data and indirect controlling of the PV system. Most of the conventional monitoring system depend on the special hardware and software. Basic design goal of monitoring system is to provide the convenience for the user and the portability for the system. In order for the system to fulfill its requirements, it was designed using Labview GUI facility based on the Windows 2000 environment of IBM PC compatible and Add-on card based on the TCP/IP protocol. Advantage of the monitoring system are a personnel expenses curtailment effect, free of the place restriction and unmanned system of the generation plants, etc..

  • PDF