• 제목/요약/키워드: Photosynthetic electrons

검색결과 9건 처리시간 0.032초

Extracting Photosynthetic Electrons from Thylakoids on Micro Pillar Electrode

  • Ryu, DongHyun;Kim, Yong Jae;Ryu, WonHyoung
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.631-636
    • /
    • 2018
  • Extraction of photosynthetic currents from thylakoids was studied using micro pillar structured electrode. Thylakoids were isolated from spinach leaves, and the size and shape of thylakoids were estimated from scanning electron microscopy images. Based on the geometry information of thylakoids, micro pillar shaped electrode was designed and fabricated using metal-assisted chemical etching of silicon wafers. Influence of photovoltaic effect on the silicon-based micro pillar electrode was confirmed to be negligible. Photosynthetic currents were measured in a three-electrode setup with an electron mediator, potassium ferricyanide. Photosynthetic currents from micro pillar electrodes were enhanced compared with the currents from flat electrodes. This indicates the significance of the enhanced contact between thylakoids and an electrode for harvesting photosynthetic electrons.

광합성 전자 추출 기반 바이오 태양광 에너지 전환기술 동향 (Trends of Photosynthetic Bio-solar Energy Conversion Technology)

  • 김용재;홍현욱;신혜인;윤재형;류원형
    • 세라미스트
    • /
    • 제21권3호
    • /
    • pp.233-248
    • /
    • 2018
  • Photosynthesis of plant, algae, and certain types of bacteria can convert solar energy to electrons at high efficiency. There have been many research investigations to utilize this mechanism to develop photosynthetic bio-solar energy systems. In this article, the fundamentals of photosynthetic energy conversion mechanism are explained and various approaches are introduced and discussed.

HPLC 및 Diving-PAM을 이용한 낙동강 하구 저서미세조류의 광합성 특성 (Photosynthetic Characteristics of Benthic Microalgae Measured by HPLC and Diving Pulse Amplitude Modulated (PAM) Fluorometry on the Nakdong River Estuary of the Korean Peninsula)

  • 김정배;정미희;박정임
    • 생태와환경
    • /
    • 제57권2호
    • /
    • pp.61-74
    • /
    • 2024
  • 낙동강 하구에 위치한 대마등은 모래톱으로 형성되어 있으며, 잘 발달된 조간대 갯벌을 갖고 있다. 본 연구에서는 2011년 1월부터 12월까지 대마등 갯벌에서 저서미세조류의 서식환경, 광합성 색소와 광합성률을 알아보았다. 퇴적물 공극수의 무기질소는 주로 암모늄염이고, 상부 수의 무기질소는 주로 질산염+아질산염으로 나타났다. Chlorophyll a 및 Fucoxanthin 농도는 퇴적물 표층이, 전체 퇴적층 평균값보다 현저히 높았다. 전체 조사기간 중 저서미세조류의 최대양자수율의 평균값은 0.52±0.03이었으며, 최고값은 2월(0.61±0.08)에 관측되었다. 최대전자전달률은 봄부터 초가을(4월에서 10월까지)까지는 높고 겨울에서 초봄(1월에서 3월 및 11월, 12월)까지는 낮은 계절적인 경향을 보였고, 최고값은 7월, 최저값은 1월에 나타났다. 시간별 저서미세조류의 최대 양자수율의 평균값은 0.48±0.03이었으며, 최고값(0.61±0.08)은 정오에 관측되었다. 최대전자전달률은 정오에 최고 값과 16시에 최저값을 보였다. 이로써 저서미세조류의 생산성은 조사시간 및 퇴적물 깊이에 따라 현저한 차이가 나타나므로 Diving-PAM을 사용하여 저서미세조류의 생산성을 정량화하기 위해서는 물때를 기준으로 조사가 이루어져야 하며, 동시에 퇴적물 층별 색소분석도 수행되어야 할 것으로 판단된다.

남서해역에서 양식되는 방사무늬김(Porphyra yezoensis Ueda)의 Diving-PAM에 의한 광합성 특성 (Photosynthetic Characteristics of Porphyra yezoensis Ueda Measured in situ by Diving Pulse-Amplitude Modulated (PAM) Fluorometry on the Southwestern Coast of the Korean Peninsula)

  • 김정배;이원찬;김형철;최희구;박정임;조윤식;박환희
    • 환경생물
    • /
    • 제30권3호
    • /
    • pp.210-218
    • /
    • 2012
  • 일반적으로 많이 양식되는 방사무늬김(Porphyra yezoensis Ueda)에 대하여 방사무늬김 엽체의 형태적 특성, 탄소 및 질소 성분의 농도, 안정동위원소 비값, 광합성 효율을 방사무늬김 양식이 이루어 지고 있는 남서해역에서 조사를 하였다. 방사무늬김의 형태적 특성에 대해서 살펴보면 평균 엽장은 11.6~16.3 (13.8) cm, 평균 엽폭은 4.6~6.3 (5.4) cm이었고, 단위면적당 방사무늬김 엽체의 평균 엽중량은 $1.1{\sim}2.6(1.86)g\;DW\;m^{-2}$이었다. 단위면적당 Chl a 농도는 2.18~17.77 (평균 9.65) mg DW Chl a $m^{-2}$이었다. 방사무늬김의 탄소 농도는 $201{\sim}317(240)mg\;DW\;g^{-1}$이었고, 질소 농도는 $39.8{\sim}50.0(43.5)mg\;DW\;g^{-1}$이었으며, C/N비는 5.0~6.7 (5.5)이었다. 방사무늬김의 방사성 안정동위원소비 중에서 탄소 안정동위원소 비는 ${\delta}^{13}C$=-25.6‰ 에서 ${\delta}^{13}C$=-24.0‰ (평균 -24.7‰)의 값을 보였고, 질소 안정동위원소 비는 ${\delta}^{15}N$=1.3‰ 에서 ${\delta}^{15}N$=4.1‰ (평균 2.1‰)의 값을 보였다. PAM에 의한 해조류의 광합성 특성은 광합성 활동의 지시자로서 사용될 수 있다. 우리는 Diving-PAM을 이용하여 각 정점 해조류인 방사무늬김의 광합성율을 분석하였다. 최대양자수율은 0.46~0.55 (평균 0.52)로서 최대 양자수율의 변동은 정점간 큰 차이는 없었다. 최대상대전자전달률은 4.71~5.84 (평균 5.33) ${\mu}mol\;electrons\;m^{-2}\;s^{-1}$ 로서 최대양자수율과 비슷한 분포를 보였다. 기울기 (${\alpha}$)는 0.027~0.045 (평균 0.036)을 보였고, 전자전달을 위한 포화광은 지역에 따라서 일부 차이를 보였으나 $139{\sim}180(156){\mu}mol\;photons\;m^{-2}\;s^{-1}$이었다. 남서해역 방사무늬김 엽체의 탄소 및 질소 농도와 광합성 효율은 지역에 따른 큰 차이는 보이지 않았다. 광합성 특성은 낮은 최대양자수율과 최대 상대전자전달률로 인한 낮은 광합성 효율이 나타났다.

Different Susceptibilities to Low Temperature Photoinhibition in the Photosynthetic Apparatus Among three Cultivars of Cucumber (Cucumis sativus L.)

  • Oh, Kwang-Hoon;Lee, Woo-Sung;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • 제8권3_4호
    • /
    • pp.105-112
    • /
    • 2001
  • Susceptibility to low temperature photoinhibition in photosynthetic apparatus was compared among three cucumber cultivars, Gahachungjang (GH), Banbaekjijeo (BB) and Gaeryangsymji (GR). By chilling in the light for 6 h, a sustained decrease in the potential quantum yield (Fv/Fm) and the oxidizable P700 contents was observed, and the decrease was less in GH than in BB and GR. Although the difference was small, some $\Phi_{PSII}$ remained in GH after light-chilling for 6 h indicating that a few electrons can flow around photosystem II(PSII). As a consequence, the primary electron acceptor of PSII, $Q_{A}$, was reduced slowly and was not fully reduced after light-chilling for 6 h in GH. Although the amplitude was small, the development of NPQ was also faster in GH, indicating a higher capacity for non-photochemical energy dissipation. The relative fraction of a fast relaxing component of NPQ (qf) was higher in GH. After light-chilling for 5 h, the values of qf in BB and GR became much smaller than that in GH, indicating BB and GR suffered more significant uncoupling of ATPase and/or irreversible damages in PSII. When fluorescence induction transients were recorded after chilling, significant differences in quenching coefficients (qQ and qN) were observed among the three cultivars.

  • PDF

Microscopy of Microbial Gas Vesicles

  • Park, Junhyung;Kim, Ki Woo
    • Applied Microscopy
    • /
    • 제47권3호
    • /
    • pp.165-170
    • /
    • 2017
  • Gas vesicles are intracellular gas-filled protein-shelled nanocompartments. The structures are spindle or cylinder-shaped, and typically $0.1{\sim}2{\mu}m$ in length and 45~250 nm in width. A variety of prokaryotes including photosynthetic bacteria and halophilic archaea form gas vesicles in their cytoplasm. Gas vesicles provide cell buoyancy as flotation devices in aqueous habitats. They are used as nanoscale molecular reporters for ultrasound imaging for biomedical purposes. The structures in halophilic archaea are poorly resolved due to the low signal-to-noise ratio from the high salt concentration in the medium. Such a limitation can be overcome using focused ion beam-thinning or inelastically scattered electrons. As the concentric bodies (~200 nm in diameter) in fungi possess gas-filled cores, it is possible that the concept of gas vesicles could be applied to eukaryotic microbes beyond prokaryotes.

호염기성 미세조류 Arthrospira platensis의 폐수처리 적용을 위한 종특이성 평가 (Species Specificity Evaluation for Wastewater Treatment Application of Alkaliphilic Microalgae Arthrospira platensis)

  • 이수현;허재희;황선진
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.282-291
    • /
    • 2022
  • Since the efficiency of wastewater treatment using microalgae differs depending on the metabolic characteristics of the species, it is important to understand the characteristics of target algae prior to the application in wastewater treatment. In this study, for the application of Arthrospira platensis to wastewater treatment, which is a filamentous alkaliphilic cyanobacteria, basic species specificity was identified and the possibility of application to wastewater treatment was investigated. As a result of the species specificity investigation, the specific growth rate between pH 7.0 and 11.0 showed the highest value near pH 9 at 0.25/day. The reason for the relatively low growth(0.08/day) at pH 11 was thought to be the CA(carbonic anhydrase) enzyme that is involved in carbon fixation during photosynthesis has the highest activity at pH 8.0 to 9.0, and at pH 11, CA activity was relatively low. In addition, A. platensis showed optimal growth at 400 PPFD(photosynthetic photon flux density) and 30℃, and this means that cyanobacteria such as A. platensis have a larger number of PS-I(photosystem I) than that of PS-II(photosystem II). It was speculated that it was because higher light intensity and temperature were required to sufficiently generate electrons to transfer to PS-I. Regarding the applicability of A. platensis, it was suggested that if a system using the synergistic effect of co-culture of A. platensis and bacteria was developed, a more efficient system would be possible. And different from single cocci, filamentous A. platensis expected to have a positive impact on harvesting, which is very important in the latter part of the wastewater treatment process.

엽록체 항산화기구 대사조절에 의한 환경스트레스 내성 식물 (Transgenic Plants with Enhanced Tolerance to Environmental Stress by Metabolic Engineering of Antioxidative Mechanism in Chloroplasts)

  • 권석윤;이영표;임순;이행순;곽상수
    • Journal of Plant Biotechnology
    • /
    • 제32권3호
    • /
    • pp.151-159
    • /
    • 2005
  • Injury caused by reactive oxygen species (ROS), known as oxidative stress, is one of the major damaging factors in plants exposed to environmental stress. Chloroplasts are specially sensitive to damage by ROS because electrons that escape from the photosynthetic electron transfer system are able to react with relatively high concentration of $O_2$ in chloroplasts. To cope with oxidative stress, plants have evolved an efficient ROS-scavenging enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX), and low molecular weight antioxidants including ascorbate, glutathione and phenolic compounds. To maintain the productivity of plants under the stress condition, it is possible to fortify the antioxidative mechanisms in the chloroplasts by manipulating the antioxidation genes. A powerful gene expression system with an appropriate promoter is key requisite for excellent stress-tolerant plants. We developed a strong oxidative stress-inducible peroxidase (SWPA2) promoter from cultured cells of sweetpotato (Ipomoea batatas) as an industrial platform technology to develop transgenic plants with enhanced tolerance to environmental stress. Recently, in order to develop transgenic sweetpotato (tv. Yulmi) and potato (Solanum tuberosum L. cv. Atlantic and Superior) plants with enhanced tolerance to multiple stress, the genes of both CuZnSOD and APX were expressed in chloroplasts under the control of an SWPA2 promoter (referred to SSA plants). As expected, SSA sweetpotato and potato plants showed enhanced tolerance to methyl viologen-mediated oxidative stress. In addition, SSA plants showed enhanced tolerance to multiple stresses such as temperature stress, drought and sulphur dioxide. Our results strongly suggested that the rational manipulation of antioxidative mechanism in chloroplasts will be applicable to the development of all plant species with enhanced tolerance to multiple environmental stresses to contribute in solving the global food and environmental problems in the 21st century.

조경수목의 제설제 피해저감을 위한 엽면코팅제 처리효과 분석 - 엽록소 형광분석법을 중심으로 - (Evaluation of the Coating Liquid Sprayed on Landscape Plants to Prevent De-icing Stresses - Focus on Chlorophyll Fluorescence Analysis -)

  • 권희범;김태진
    • 한국조경학회지
    • /
    • 제35권6호
    • /
    • pp.29-36
    • /
    • 2008
  • This study examined the de-icing agents' stresses on Pinus strobus and Pinus thunbergii by chlorophyll fluorescence analysis. The assumption of this study was that photosynthetic efficiency was changed by de-icing agents applied onto highways in winter by altering the concentration of the de-icier, types of de-icer and leaf surface coating liquid application. The practical purpose of this study was to investigate the de-icing gents stresses on Pinus strobus by the highway area where de-icing agents were used frequently and to discover out minimizing stratages to prevent further damages. or this simulation study, a sample plot was established in Bogae-myeon, Anseong, Gyeonggi-do and Pinus strobus and Pinus thunbergii were planted for the examination in April, 2005. Five types of de-icing agents - NaCl, $CaCl_2$, T product(NS40:low cWoride de-icer type), NaCl+$CaCl_2$ and T product+$CaCl_2$ - were selected and the their concentration was altered to 0%, 5%, and 9%. Five types of de-icing agents were applied to both trees treated by a leaf surface coating liquid and trees not treated by leaf surface coating liquid. For the fluorescence analysis, the leaf surface coating liquid, which was diluted by 10 times, was sprkinkled onto the two tree species three days prior to gathering samples. Sample leaves from the two tree species were gathered at 10 o'clock in the morning of mid-August, 2006 and brought to the laboratory within three hours to be dipped in different concentrations (0%, 5%, or 9%) of the five de-icing agents for two minutes. Then the eaves were placed on the filter paper dipped in each solution on a petri dish, sealed with polyethylene film and kept in a growth chamber at $22^{\circ}C$ for 72 hours. Out of the growth chamber, the leaves were treated with a chorophyll fluorescence reaction analyzer for 30 minutes to measure the initial light acceptance rate(Fo), maximum light acceptance ate(Fv/Fm), light acceptance usage(F' q/F' m) and optical electron delivery coefficient(qP). As a result, Pinus strobus' initial light acceptance rate(Fo) decreased as T product and NaCl increased in concentration, and $Cal_2$ did not reduce much with the eaf surface coating liquid application. Maximum light acceptance rate(Fv/Fm) and light acceptance usage(F' q/F' m) decreased sharply as T product and NaCl increased in concentration and NaCl+$CaCl_2$ and T product+$CaCl_2$ did not reduce much with leaf surface coating liquid application. Optical electrons delivery coefficient (qP) decreased as T product increased in concentration on trees without the leaf surface coating liquid application and all other de-icing agents did not show much reduction. As for Pinus thunbergii, the initial light acceptance rate(Fo) decreased as T product increased in concentration, but the maximum light acceptance rate(Fv/Fm) was not reduced much by changes in concentration. light acceptance usage(F' q/F' m) decreased as NaCl increased in concentration and optical electron delivery coefficient(qP) decreased as NaCl increased in concentration in both with and without leaf surface coating liquid application. In conclusion, it was possible to plant Pinus strobus if spraying leaf surface coating liquid or cleaning deicing salt to prevent the damage caused by deicing agents was more economical than replacing the trees. If not, it was better to plant Pinus thunbergii. Another way to decrease the deicing gents stresses of landscape plants would be planting the trees further away from the roads even though it might take longer period to display its planting functions.