Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.3.04

Trends of Photosynthetic Bio-solar Energy Conversion Technology  

Kim, Yong Jae (Department of Mechanical Engineering, Yonsei University)
Hong, Hyeonaug (Department of Mechanical Engineering, Yonsei University)
Shin, HyeIn (Department of Mechanical Engineering, Yonsei University)
Yun, JaeHyoung (Department of Mechanical Engineering, Yonsei University)
Ryu, WonHyoung (Department of Mechanical Engineering, Yonsei University)
Publication Information
Ceramist / v.21, no.3, 2018 , pp. 233-248 More about this Journal
Abstract
Photosynthesis of plant, algae, and certain types of bacteria can convert solar energy to electrons at high efficiency. There have been many research investigations to utilize this mechanism to develop photosynthetic bio-solar energy systems. In this article, the fundamentals of photosynthetic energy conversion mechanism are explained and various approaches are introduced and discussed.
Keywords
Photosynthesis; Bio-solar energy; Photosynthetic electrons; Thylakoid membrane; Photosystems;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. LeBlanc, G. Chen, E. A. Gizzie, G. K. Jennings, D. E. Cliffel, "Enhanced photocurrents of photosystem I films on p doped silicon", Adv Mater, 24 [44] 5959-5962 (2012).   DOI
2 A. Mershin, K. Matsumoto, L. Kaiser, D. Yu, M. Vaughn, M. K. Nazeeruddin, B. D. Bruce, M. Graetzel, S. Zhang, "Self-assembled photosystem-I biophotovoltaics on nanostructured $TiO_2$ and ZnO", Sci Rep, 2 srep00234 (2012).
3 G. LeBlanc, K. M. Winter, W. B. Crosby, G. K. Jennings, D. E. Cliffel, "Integration of photosystem I with graphene oxide for photocurrent enhancement", Advanced Energy Materials, 4 [9] 1301953 (2014).   DOI
4 E. A. Gizzie, J. S. Niezgoda, M. T. Robinson, A. G. Harris, G. K. Jennings, S. J. Rosenthal, D. E. Cliffel, "Photosystem I-polyaniline/$TiO_2$ solid-state solar cells: simple devices for biohybrid solar energy conversion", Energy Environ Sci, 8 [12] 3572-3576 (2015).   DOI
5 K. Rao, D. Hall, N. Vlachopoulos, M. Gratzel, M. Evans, M. Seibert, "Photoelectrochemical responses of photosystem II particles immobilized on dyederivatized $TiO_2$ films", J Photochem Photobiol B: Biol, 5 [3-4] 379-389 (1990).   DOI
6 P. Cai, X. Feng, J. Fei, G. Li, J. Li, J. Huang, J. Li, "Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent", Nanoscale, 7 [25] 10908-10911 (2015).   DOI
7 A. Efrati, R. Tel-Vered, D. Michaeli, R. Nechushtai, I. Willner, "Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photo-bioelectrochemical cells", Energy Environ Sci, 6 [10] 2950-2956 (2013).   DOI
8 M. Kondo, M. Amano, T. Joke, S. Ishigure, T. Noji, T. Dewa, Y. Amao, M. Nango, "Immobilization of photosystem I or II complexes on electrodes for preparation of photoenergy-conversion devices", Res Chem Intermed, 40 [9] 3287-3293 (2014).   DOI
9 W. Wang, Z. Wang, Q. Zhu, G. Han, C. Ding, J. Chen, J.-R. Shen, C. Li, "Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell", Chem Commun, 51 [95] 16952-16955 (2015).   DOI
10 Y. Zhang, N. M. Magdaong, M. Shen, H. A. Frank, J. F. Rusling, "Efficient photoelectrochemical energy conversion using spinach photosystem II (PSII) in lipid multilayer films", ChemistryOpen, 4 [2] 111-114 (2015).   DOI
11 O. Yehezkeli, R. Tel-Vered, J. Wasserman, A. Trifonov, D. Michaeli, R. Nechushtai, I. Willner, "Integrated photosystem II-based photobioelectrochemical cells", Nat Commun, 3 DIO1741 (2012).
12 G. Li, X. Feng, J. Fei, P. Cai, J. Li, J. Huang, J. Li, "Interfacial Assembly of Photosystem II with Conducting Polymer Films toward Enhanced Photo Bioelectrochemical Cells", Advanced Materials Interfaces, 4 [1] 1600619 (2017).   DOI
13 K. Brinkert, F. Le Formal, X. Li, J. Durrant, A. W. Rutherford, A. Fantuzzi, "Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways", Biochim Biophys Acta, 1857 [9] 1497-1505 (2016).   DOI
14 M. Rasmussen, S. D. Minteer, "Investigating the mechanism of thylakoid direct electron transfer for photocurrent generation", Electrochim Acta, 126 68-73 (2014).   DOI
15 R. Pamu, V. P. Sandireddy, R. Kalyanaraman, B. Khomami, D. Mukherjee, "Plasmon-Enhanced Photocurrent from Photosystem I Assembled on Ag Nanopyramids", J Phys Chem Lett, 9 [5] 970-977 (2018).   DOI
16 Z. Zeng, T. Mabe, W. Zhang, B. Bagra, Z. Ji, Z. Yin, K. Allado, J. Wei, "Plasmon-exciton Coupling in Photosystem I Based Biohybrid Photoelectrochemical Cells", ACS Applied Bio Materials, (2018).
17 G. Zucchelli, F. M. Garlaschi, R. C. Jennings, "Spectroscopic analysis of chlorophyll photobleaching in spinach thylakoids, grana and light-harvesting chlorophyll a/b protein complex", J Photochem Photobiol B: Biol, 2 [4] 483-490 (1988).   DOI
18 M. Rasmussen, S. D. Minteer, "Thylakoid direct photobioelectrocatalysis: utilizing stroma thylakoids to improve bio-solar cell performance", PCCP, 16 [32] 17327-17331 (2014).   DOI
19 D. Pankratov, G. Pankratova, T. P. Dyachkova, P. Falkman, H.-E. Åkerlund, M. D. Toscano, Q. Chi, L. Gorton, "Supercapacitive Biosolar Cell Driven by Direct Electron Transfer between Photosynthetic Membranes and CNT Networks with Enhanced Performance", ACS Energy Letters, 2 [11] 2635-2639 (2017).   DOI
20 J. Lee, J. Im, S. Kim, "Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode", Bioelectrochemistry, 108 21-27 (2016).   DOI
21 H. Kanso, G. Pankratova, P. Bollella, D. Leech, D. Hernandez, L. Gorton, "Sunlight photocurrent generation from thylakoid membranes on gold nanoparticle modified screen-printed electrodes", J Electroanal Chem, 816 259-264 (2018).   DOI
22 K. Hasan, Y. Dilgin, S. C. Emek, M. Tavahodi, H. E. Akerlund, P. A. Albertsson, L. Gorton, "Photoelectrochemical communication between thylakoid membranes and gold electrodes through different quinone derivatives", ChemElectroChem, 1 [1] 131-139 (2014).   DOI
23 P. Cai, G. Li, Y. Yang, X. Su, Z. Zhang, "Co-assembly of thylakoid and graphene oxide as a photoelectrochemical composite film for enhanced mediated electron transfer", Colloids Surf Physicochem Eng Aspects, (2018).
24 F.-L. Ng, S.-M. Phang, V. Periasamy, K. Yunus, A. C. Fisher, "Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance", PloS one, 9 [5] e97643 (2014).   DOI
25 W. Ryu, S.-J. Bai, J. S. Park, Z. Huang, J. Moseley, T. Fabian, R. J. Fasching, A. R. Grossman, F. B. Prinz, "Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system", Nano Lett, 10 [4] 1137-1143 (2010).   DOI
26 H. Hong, Y. J. Kim, M. Han, G. Yoo, H. W. Song, Y. Chae, J.-C. Pyun, A. R. Grossman, W. Ryu, "Prolonged and highly efficient intracellular extraction of photosynthetic electrons from single algal cells by optimized nanoelectrode insertion", Nano Res, 11 [1] 397-409 (2018).   DOI
27 L. H. Kim, Y. J. Kim, H. Hong, D. Yang, M. Han, G. Yoo, H. W. Song, Y. Chae, J.-C. Pyun, A. R. Grossman, W. Ryu, "Patterned Nanowire Electrode Array for Direct Extraction of Photosynthetic Electrons from Multiple Living Algal Cells", Adv Funct Mater, 26 [42] 7679-7689 (2016).   DOI
28 Y. H. Seo, L. H. Kim, F. B. Prinz, W. Ryu, "Digitallypatterned nanoprobe arrays for single cell insertion enabled by wet tapping", RSC adv, 4 16655-166661 (2014).   DOI
29 Y. J. Kim, J. Yun, S. I. Kim, H. Hong, J.-H. Park, J.-C. Pyun, W. Ryu, "Scalable long-term extraction of photosynthetic electrons by simple sandwiching of nanoelectrode array with densely-packed algal cell film", Biosens Bioelectron, 117 15-22 (2018).   DOI
30 I. Lee, J. W. Lee, E. Greenbaum, "Biomolecular electronics: vectorial arrays of photosynthetic reaction centers", PhRvL, 79 [17] 3294 (1997).
31 R. Das, P. J. Kiley, M. Segal, J. Norville, A. A. Yu, L. Wang, S. A. Trammell, L. E. Reddick, R. Kumar, F. Stellacci, "Integration of photosynthetic protein molecular complexes in solid-state electronic devices", Nano Lett, 4 [6] 1079-1083 (2004).   DOI
32 C. J. Faulkner, S. Lees, P. N. Ciesielski, D. E. Cliffel, G. K. Jennings, "Rapid assembly of photosystem I monolayers on gold electrodes", Langmuir, 24 [16] 8409-8412 (2008).   DOI
33 L. Frolov, O. Wilner, C. Carmeli, I. Carmeli, "Fabrication of Oriented Multilayers of Photosystem I Proteins on Solid Surfaces by Auto Metallization", Adv Mater, 20 [2] 263-266 (2008).   DOI
34 K. Stieger, S. Feifel, H. Lokstein, M. Hejazi, A. Zouni, F. Lisdat, "Biohybrid architectures for efficient lightto-current conversion based on photosystem I within scalable 3D mesoporous electrodes", J Mater Chem A, 4 [43] 17009-17017 (2016).   DOI
35 P. N. Ciesielski, C. J. Faulkner, M. T. Irwin, J. M. Gregory, N. H. Tolk, D. E. Cliffel, G. K. Jennings, "Enhanced photocurrent production by photosystem I multilayer assemblies", Adv Funct Mater, 20 [23] 4048-4054 (2010).   DOI
36 V. B. Shah, W. R. Henson, T. S. Chadha, G. Lakin, H. Liu, R. E. Blankenship, P. Biswas, "Linker-free deposition and adhesion of photosystem I onto nanostructured $TiO_2$ for biohybrid photoelectrochemical cells", Langmuir, 31 [5] 1675-1682 (2015).   DOI